24×125=125×8×3=1000×3=3000
擴充套件知識:
簡便計算大全:
一、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括號時,我們可以“帶符號搬家”。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、結合律
(一)加括號法
1.當一個計算題只有加減運算又沒有括號時,我們可以在加號後面直接添括號,括到括號裡的運算原來是加還是加,是減還是減。但是在減號後面添括號時,括到括號裡的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括號時,括號前是加號,括號裡不變號,括號前是減號,括號裡要變號。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.當一個計算題只有乘除運算又沒有括號時,我們可以在乘號後面直接添括號,括到括號裡的運算,原來是乘還是乘,是除還是除。但是在除號後面添括號時,括到括號裡的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括號時,括號前是乘號,括號裡不變號,括號前是除號,括號裡要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括號法
1.當一個計算題只有加減運算又有括號時,我們可以將加號後面的括號直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括號去掉時,原來括號裡的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括號了,可以帶符號搬家了哈) (注:去括號是新增括號的逆運算)
2.當一個計算題只有乘除運算又有括號時,我們可以將乘號後面的括號直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括號去掉時,原來括號裡的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括號了,可以帶符號搬家了哈) (注:去掉括號是新增括號的逆運算)
三、乘法分配律
1.分配法 括號裡是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這裡35是相同因數。
3.注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900
24×125=125×8×3=1000×3=3000
擴充套件知識:
簡便計算大全:
一、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括號時,我們可以“帶符號搬家”。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、結合律
(一)加括號法
1.當一個計算題只有加減運算又沒有括號時,我們可以在加號後面直接添括號,括到括號裡的運算原來是加還是加,是減還是減。但是在減號後面添括號時,括到括號裡的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括號時,括號前是加號,括號裡不變號,括號前是減號,括號裡要變號。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.當一個計算題只有乘除運算又沒有括號時,我們可以在乘號後面直接添括號,括到括號裡的運算,原來是乘還是乘,是除還是除。但是在除號後面添括號時,括到括號裡的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括號時,括號前是乘號,括號裡不變號,括號前是除號,括號裡要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括號法
1.當一個計算題只有加減運算又有括號時,我們可以將加號後面的括號直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括號去掉時,原來括號裡的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括號了,可以帶符號搬家了哈) (注:去括號是新增括號的逆運算)
2.當一個計算題只有乘除運算又有括號時,我們可以將乘號後面的括號直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括號去掉時,原來括號裡的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括號了,可以帶符號搬家了哈) (注:去掉括號是新增括號的逆運算)
三、乘法分配律
1.分配法 括號裡是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這裡35是相同因數。
3.注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900