發散思維(Divergent Thinking),又稱輻射思維、放射思維、擴散思維或求異思維,是指大腦在思維時呈現的一種擴散狀態的思維模式,它表現為思維視野廣闊,思維呈現出多維發散狀。如"一題多解"、"一事多寫"、"一物多用"等方式,培養髮散思維能力。 不少心理學家認為,發散思維是創造性思維的最主要的特點,是測定創造力的主要標誌之一。
舉例立體思維
思考問題時跳出點、線、面的限制,立體式進行思維。
立體綠化:屋頂花園增加綠化面積、減少佔地改善環境、淨化空氣。
立體農業、間作:如玉米地種綠豆、高粱地裡種花生等
立體森林:高大喬木下種灌木、灌木下種草,草下種食用菌。
立體漁業:網箱養魚充分利用水面、水體
立體開發資源:煤、石頭、開發產品
你還能想出什麼樣的立體思維形式
抽象思維(abstract thinking)是人們在認識活動中運用概念、判斷、推理等思維形式,對客觀現實進行間接的、概括的反映的過程。
是理論化、系統化的世界觀,是自然知識、社會知識、思維知識的概括和總結,是世界觀和方法論的統一。是社會意識的具體存在和表現形式,是以追求世界的本源、本質、共性或絕對、終極的形而上者為形式,以確立哲學世界觀和方法。
抽象思維的例子
美籍華人陳省身教授是當代舉世聞名的數學家,他在北京大學的一次講學中語驚四座:
“人們常說,三角形內角和等於180度。但是,這是不對的!”
大家愕然。怎麼回事?三角形內角和是180度,這不是數學常識嗎?
接著,這位老教授對大家的疑問作了精闢的解答:“說三角形內角和為180度不對,不是說這個事實不對,而是說這種看問題的方法不對,應當說三角形外角和是360度。”
“把眼光盯住內角,我們只能看到:
三角形內角和是180度;
四邊形內角和是360度;
n邊形內角和是(n-2)×180度。
這就找到了一個計算內角和的公式。公式裡出現了邊數n。如果看外角呢?
三角形的外角和是360度;
四邊形的外角和是360度;
五邊形的外角和是360度;
任意n邊形外角和都是360度。
這就把多種情形用一個十分簡單的結論概括起來。用一個與n無關的常數代替了與n有關的公式,找到了更一般的規律。”
發散思維(Divergent Thinking),又稱輻射思維、放射思維、擴散思維或求異思維,是指大腦在思維時呈現的一種擴散狀態的思維模式,它表現為思維視野廣闊,思維呈現出多維發散狀。如"一題多解"、"一事多寫"、"一物多用"等方式,培養髮散思維能力。 不少心理學家認為,發散思維是創造性思維的最主要的特點,是測定創造力的主要標誌之一。
舉例立體思維
思考問題時跳出點、線、面的限制,立體式進行思維。
立體綠化:屋頂花園增加綠化面積、減少佔地改善環境、淨化空氣。
立體農業、間作:如玉米地種綠豆、高粱地裡種花生等
立體森林:高大喬木下種灌木、灌木下種草,草下種食用菌。
立體漁業:網箱養魚充分利用水面、水體
立體開發資源:煤、石頭、開發產品
你還能想出什麼樣的立體思維形式
抽象思維(abstract thinking)是人們在認識活動中運用概念、判斷、推理等思維形式,對客觀現實進行間接的、概括的反映的過程。
是理論化、系統化的世界觀,是自然知識、社會知識、思維知識的概括和總結,是世界觀和方法論的統一。是社會意識的具體存在和表現形式,是以追求世界的本源、本質、共性或絕對、終極的形而上者為形式,以確立哲學世界觀和方法。
抽象思維的例子
美籍華人陳省身教授是當代舉世聞名的數學家,他在北京大學的一次講學中語驚四座:
“人們常說,三角形內角和等於180度。但是,這是不對的!”
大家愕然。怎麼回事?三角形內角和是180度,這不是數學常識嗎?
接著,這位老教授對大家的疑問作了精闢的解答:“說三角形內角和為180度不對,不是說這個事實不對,而是說這種看問題的方法不對,應當說三角形外角和是360度。”
“把眼光盯住內角,我們只能看到:
三角形內角和是180度;
四邊形內角和是360度;
n邊形內角和是(n-2)×180度。
這就找到了一個計算內角和的公式。公式裡出現了邊數n。如果看外角呢?
三角形的外角和是360度;
四邊形的外角和是360度;
五邊形的外角和是360度;
任意n邊形外角和都是360度。
這就把多種情形用一個十分簡單的結論概括起來。用一個與n無關的常數代替了與n有關的公式,找到了更一般的規律。”