假設檢驗一定要計算檢驗統計量。 假設檢驗是數理統計學中根據一定假設條件由樣本推斷總體的一種方法。具體作法是:根據問題的需要對所研究的總體作某種假設,記作H0;選取合適的統計量,這個統計量的選取要使得在假設H0成立時,其分佈為已知;由實測的樣本,計算出統計量的值,並根據預先給定的顯著性水平進行檢驗,作出拒絕或接受假設H0的判斷。常用的假設檢驗方法有u—檢驗法、t檢驗法、χ2檢驗法(卡方檢驗)、F—檢驗法,秩和檢驗等。 基本步驟
1、提出檢驗假設又稱無效假設,符號是H0;備擇假設的符號是H1。 H0:樣本與總體或樣本與樣本間的差異是由抽樣誤差引起的; H1:樣本與總體或樣本與樣本間存在本質差異; 預先設定的檢驗水準為0.05;當檢驗假設為真,但被錯誤地拒絕的機率,記作α,通常取α=0.05或α=0.01。
2、選定統計方法,由樣本觀察值按相應的公式計算出統計量的大小,如X2值、t值等。根據資料的型別和特點,可分別選用Z檢驗,T檢驗,秩和檢驗和卡方檢驗等。
3、根據統計量的大小及其分佈確定檢驗假設成立的可能性P的大小並判斷結果。若P>α,結論為按α所取水準不顯著,不拒絕H0,即認為差別很可能是由於抽樣誤差造成的,在統計上不成立;如果P≤α,結論為按所取α水準顯著,拒絕H0,接受H1,則認為此差別不大可能僅由抽樣誤差所致,很可能是實驗因素不同造成的,故在統計上成立。P值的大小一般可透過查閱相應的界值表得到。 做法: 1.根據實際情況提出原假設和備擇假設; 2.根據假設的特徵,選擇合適的檢驗統計量; 3.根據樣本觀察值,計算檢驗統計量的觀察值(obs); 4.選擇許容顯著性水平,並根據相應的統計量的統計分佈表查出相應的臨界值(ctrit); 5.根據檢驗統計量觀察值的位置決定原假設取捨。 注意的問題 1、做假設檢驗之前,應注意資料本身是否有可比性。 2、當差別有統計學意義時應注意這樣的差別在實際應用中有無意義。 3、根據資料型別和特點選用正確的假設檢驗方法。
4、根據專業及經驗確定是選用單側檢驗還是雙側檢驗。
5、當檢驗結果為拒絕無效假設時,應注意有發生I類錯誤的可能性,即錯誤地拒絕了本身成立的H0,發生這種錯誤的可能性預先是知道的,即檢驗水準那麼大;當檢驗結果為不拒絕無效假設時,應注意有發生II類錯誤的可能性,即仍有可能錯誤地接受了本身就不成立的H0,發生這種錯誤的可能性預先是不知道的,但與樣本含量和I類錯誤的大小有關係。
6、判斷結論時不能絕對化,應注意無論接受或拒絕檢驗假設,都有判斷錯誤的可能性。
7、報告結論時是應注意說明所用的統計量,檢驗的單雙側及P值的確切範圍。
假設檢驗一定要計算檢驗統計量。 假設檢驗是數理統計學中根據一定假設條件由樣本推斷總體的一種方法。具體作法是:根據問題的需要對所研究的總體作某種假設,記作H0;選取合適的統計量,這個統計量的選取要使得在假設H0成立時,其分佈為已知;由實測的樣本,計算出統計量的值,並根據預先給定的顯著性水平進行檢驗,作出拒絕或接受假設H0的判斷。常用的假設檢驗方法有u—檢驗法、t檢驗法、χ2檢驗法(卡方檢驗)、F—檢驗法,秩和檢驗等。 基本步驟
1、提出檢驗假設又稱無效假設,符號是H0;備擇假設的符號是H1。 H0:樣本與總體或樣本與樣本間的差異是由抽樣誤差引起的; H1:樣本與總體或樣本與樣本間存在本質差異; 預先設定的檢驗水準為0.05;當檢驗假設為真,但被錯誤地拒絕的機率,記作α,通常取α=0.05或α=0.01。
2、選定統計方法,由樣本觀察值按相應的公式計算出統計量的大小,如X2值、t值等。根據資料的型別和特點,可分別選用Z檢驗,T檢驗,秩和檢驗和卡方檢驗等。
3、根據統計量的大小及其分佈確定檢驗假設成立的可能性P的大小並判斷結果。若P>α,結論為按α所取水準不顯著,不拒絕H0,即認為差別很可能是由於抽樣誤差造成的,在統計上不成立;如果P≤α,結論為按所取α水準顯著,拒絕H0,接受H1,則認為此差別不大可能僅由抽樣誤差所致,很可能是實驗因素不同造成的,故在統計上成立。P值的大小一般可透過查閱相應的界值表得到。 做法: 1.根據實際情況提出原假設和備擇假設; 2.根據假設的特徵,選擇合適的檢驗統計量; 3.根據樣本觀察值,計算檢驗統計量的觀察值(obs); 4.選擇許容顯著性水平,並根據相應的統計量的統計分佈表查出相應的臨界值(ctrit); 5.根據檢驗統計量觀察值的位置決定原假設取捨。 注意的問題 1、做假設檢驗之前,應注意資料本身是否有可比性。 2、當差別有統計學意義時應注意這樣的差別在實際應用中有無意義。 3、根據資料型別和特點選用正確的假設檢驗方法。
4、根據專業及經驗確定是選用單側檢驗還是雙側檢驗。
5、當檢驗結果為拒絕無效假設時,應注意有發生I類錯誤的可能性,即錯誤地拒絕了本身成立的H0,發生這種錯誤的可能性預先是知道的,即檢驗水準那麼大;當檢驗結果為不拒絕無效假設時,應注意有發生II類錯誤的可能性,即仍有可能錯誤地接受了本身就不成立的H0,發生這種錯誤的可能性預先是不知道的,但與樣本含量和I類錯誤的大小有關係。
6、判斷結論時不能絕對化,應注意無論接受或拒絕檢驗假設,都有判斷錯誤的可能性。
7、報告結論時是應注意說明所用的統計量,檢驗的單雙側及P值的確切範圍。