是的。線粒體和葉綠體分別起源於原始真核細胞內共生的細菌和藍藻。1970年Margulis在分析了大量資料的基礎上提出了一種設想,認為真核細胞的祖先是一種體積巨大的、不需氧的、具有吞噬能力的細胞,能將吞噬所得的糖類進行酵解取得能量。而線粒體的祖先——原線粒體則是一種革蘭氏陰性菌,含有三羧酸迴圈所需的酶系和電子傳遞鏈,故它可利用氧氣把糖酵解的產物丙酮酸進一步分解,獲得比酵解更多的能量。當這種細菌被原始真核細胞吞噬後,即與宿主細胞間形成互利的共生關係,原始真核細胞利用這種細菌(原線粒體)充分供給能量,而原線粒體從宿主細胞獲得更多的原料。葉綠體和線粒體有一小段dna與細胞核不同,而且為半自主細胞器,因此,可能是吞噬後共生退化造成的。線粒體在形態,染色反應、化學組成、物理性質、活動狀態、遺傳體系等方面,都很像細菌,所以人們推測線粒體起源於內共生。按照這種觀點,需氧細菌被原始真核細胞吞噬以後,有可能在長期互利共生中演化形成了現在的線粒體。在進化過程中好氧細菌逐步喪失了獨立性,並將大量遺傳資訊轉移到了宿主細胞中,形成了線粒體的半自主性。 線粒體遺傳體系確實具有許多和細菌相似的特徵,如:
①DNA為環形分子,無內含子;
②核糖體為70S型;
④tRNA、氨醯基-tRNA合成酶不同於細胞質中的;
⑤蛋白質合成的起始氨醯基tRNA是N-甲醯甲硫氨醯tRNA,對細菌蛋白質合成抑制劑氯黴素敏感對細胞質蛋白合成抑制劑放線菌酮不敏感。此外哺乳動物mtDNA的遺傳密碼與通用遺傳密碼有以下區別:①UGA不是終止訊號,而是色氨酸的密碼;②多肽內部的甲硫氨酸由AUG和AUA兩個密碼子編碼,起始甲硫氨酸由AUG,AUA,AUU和AUC四個密碼子編碼;③AGA,AGG不是精氨酸的密碼子,而是終止密碼子,線粒體密碼系統中有4個終止密碼子(UAA,UAG,AGA,AGG)。 mtDNA表現為母系遺傳。其突變率高於核DNA,並且缺乏修復能力。有些遺傳病,如Leber遺傳性視神經病,肌陣攣性癲癇等均與線粒體基因突變有關。在各種細胞器中,線粒體具有特殊性,因其含有核糖體且自身帶有遺傳物質。線粒體DNA是環狀的,且有一些和標準真核生物遺傳密碼不同的變化。這些特性導致了內共生學說——線粒體起源於內共生體。這種被廣泛接受的學說認為,原先獨立生活的細菌在真核生物的共同祖先中繁殖,形成今天的線粒體。
是的。線粒體和葉綠體分別起源於原始真核細胞內共生的細菌和藍藻。1970年Margulis在分析了大量資料的基礎上提出了一種設想,認為真核細胞的祖先是一種體積巨大的、不需氧的、具有吞噬能力的細胞,能將吞噬所得的糖類進行酵解取得能量。而線粒體的祖先——原線粒體則是一種革蘭氏陰性菌,含有三羧酸迴圈所需的酶系和電子傳遞鏈,故它可利用氧氣把糖酵解的產物丙酮酸進一步分解,獲得比酵解更多的能量。當這種細菌被原始真核細胞吞噬後,即與宿主細胞間形成互利的共生關係,原始真核細胞利用這種細菌(原線粒體)充分供給能量,而原線粒體從宿主細胞獲得更多的原料。葉綠體和線粒體有一小段dna與細胞核不同,而且為半自主細胞器,因此,可能是吞噬後共生退化造成的。線粒體在形態,染色反應、化學組成、物理性質、活動狀態、遺傳體系等方面,都很像細菌,所以人們推測線粒體起源於內共生。按照這種觀點,需氧細菌被原始真核細胞吞噬以後,有可能在長期互利共生中演化形成了現在的線粒體。在進化過程中好氧細菌逐步喪失了獨立性,並將大量遺傳資訊轉移到了宿主細胞中,形成了線粒體的半自主性。 線粒體遺傳體系確實具有許多和細菌相似的特徵,如:
①DNA為環形分子,無內含子;
②核糖體為70S型;
④tRNA、氨醯基-tRNA合成酶不同於細胞質中的;
⑤蛋白質合成的起始氨醯基tRNA是N-甲醯甲硫氨醯tRNA,對細菌蛋白質合成抑制劑氯黴素敏感對細胞質蛋白合成抑制劑放線菌酮不敏感。此外哺乳動物mtDNA的遺傳密碼與通用遺傳密碼有以下區別:①UGA不是終止訊號,而是色氨酸的密碼;②多肽內部的甲硫氨酸由AUG和AUA兩個密碼子編碼,起始甲硫氨酸由AUG,AUA,AUU和AUC四個密碼子編碼;③AGA,AGG不是精氨酸的密碼子,而是終止密碼子,線粒體密碼系統中有4個終止密碼子(UAA,UAG,AGA,AGG)。 mtDNA表現為母系遺傳。其突變率高於核DNA,並且缺乏修復能力。有些遺傳病,如Leber遺傳性視神經病,肌陣攣性癲癇等均與線粒體基因突變有關。在各種細胞器中,線粒體具有特殊性,因其含有核糖體且自身帶有遺傳物質。線粒體DNA是環狀的,且有一些和標準真核生物遺傳密碼不同的變化。這些特性導致了內共生學說——線粒體起源於內共生體。這種被廣泛接受的學說認為,原先獨立生活的細菌在真核生物的共同祖先中繁殖,形成今天的線粒體。