在一些初始化處理後,MD5以512位分組來處理輸入文字,每一分組又劃分為16個32位子分組。演算法的輸出由四個32位分組組成,將它們級聯形成一個128位雜湊值。
首先填充訊息使其長度恰好為一個比512位的倍數僅小64位的數。填充方法是附一個1在訊息後面,後接所要求的多個0,然後在其後附上64位的訊息長度(填充前)。這兩步的作用是使訊息長度恰好是512位的整數倍(演算法的其餘部分要求如此),同時確保不同的訊息在填充後不相同。
四個32位變數初始化為:
A=0x01234567
B=0x89abcdef
C=0xfedcba98
D=0x76543210
它們稱為連結變數(chaining variable)
接著進行演算法的主迴圈,迴圈的次數是訊息中512位訊息分組的數目。
將上面四個變數複製到別外的變數中:A到a,B到b,C到c,D到d。
主迴圈有四輪(MD4只有三輪),每輪很相擬。第一輪進行16次操作。每次操作對a,b,c和d中的其中三個作一次非線性函式運算,然後將所得結果加上第四個變數,文字的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a,b,c或d中之一。最後用該結果取代a,b,c或d中之一。
以一下是每次操作中用到的四個非線性函式(每輪一個)。
F(X,Y,Z)=(X&Y)|((~X)&Z)
G(X,Y,Z)=(X&Z)|(Y&(~Z))
H(X,Y,Z)=X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是與,|是或,~是非,^是異或)
這些函式是這樣設計的:如果X、Y和Z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
函式F是按逐位方式操作:如果X,那麼Y,否則Z。函式H是逐位奇偶運算子。
設Mj表示訊息的第j個子分組(從0到15),<<<s表示迴圈左移s位,則四種操作為:
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<<<s)
GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<<<s)
HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<<<s)
II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<<s)
這四輪(64步)是:
第一輪
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二輪
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三輪
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四輪
II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)
常數ti可以如下選擇:
在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。
(2的32次方)
所有這些完成之後,將A,B,C,D分別加上a,b,c,d。然後用下一分組資料繼續執行演算法,最後的輸出是A,B,C和D的級聯。
在一些初始化處理後,MD5以512位分組來處理輸入文字,每一分組又劃分為16個32位子分組。演算法的輸出由四個32位分組組成,將它們級聯形成一個128位雜湊值。
首先填充訊息使其長度恰好為一個比512位的倍數僅小64位的數。填充方法是附一個1在訊息後面,後接所要求的多個0,然後在其後附上64位的訊息長度(填充前)。這兩步的作用是使訊息長度恰好是512位的整數倍(演算法的其餘部分要求如此),同時確保不同的訊息在填充後不相同。
四個32位變數初始化為:
A=0x01234567
B=0x89abcdef
C=0xfedcba98
D=0x76543210
它們稱為連結變數(chaining variable)
接著進行演算法的主迴圈,迴圈的次數是訊息中512位訊息分組的數目。
將上面四個變數複製到別外的變數中:A到a,B到b,C到c,D到d。
主迴圈有四輪(MD4只有三輪),每輪很相擬。第一輪進行16次操作。每次操作對a,b,c和d中的其中三個作一次非線性函式運算,然後將所得結果加上第四個變數,文字的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a,b,c或d中之一。最後用該結果取代a,b,c或d中之一。
以一下是每次操作中用到的四個非線性函式(每輪一個)。
F(X,Y,Z)=(X&Y)|((~X)&Z)
G(X,Y,Z)=(X&Z)|(Y&(~Z))
H(X,Y,Z)=X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是與,|是或,~是非,^是異或)
這些函式是這樣設計的:如果X、Y和Z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
函式F是按逐位方式操作:如果X,那麼Y,否則Z。函式H是逐位奇偶運算子。
設Mj表示訊息的第j個子分組(從0到15),<<<s表示迴圈左移s位,則四種操作為:
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<<<s)
GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<<<s)
HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<<<s)
II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<<s)
這四輪(64步)是:
第一輪
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二輪
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三輪
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四輪
II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)
常數ti可以如下選擇:
在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。
(2的32次方)
所有這些完成之後,將A,B,C,D分別加上a,b,c,d。然後用下一分組資料繼續執行演算法,最後的輸出是A,B,C和D的級聯。