結果為:1
解題過程如下:
limx→+∞[x+√(1+x^2)]^1/x
解:
L=lim(x->+∞) [x +√(1+x^2)]^(1/x)
lnL=lim(x->+∞) ln[x +√(1+x^2)]/x (∞/∞)
=lim(x->+∞) [1 + x/√(1+x^2) ]/[x +√(1+x^2)]
=lim(x->+∞) [1 + 1/√(1/x^2+1) ]/[x +√(1+x^2)]
=0
分子->2,分母->∞
=>L =1
L=lim(x->+∞) [x +√(1+x^2)]^(1/x)=1
擴充套件資料
求數列極限的方法:
設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:
1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。
2、函式f(x)在點x0的左右極限中至少有一個不存在。
3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。
則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。
結果為:1
解題過程如下:
limx→+∞[x+√(1+x^2)]^1/x
解:
L=lim(x->+∞) [x +√(1+x^2)]^(1/x)
lnL=lim(x->+∞) ln[x +√(1+x^2)]/x (∞/∞)
=lim(x->+∞) [1 + x/√(1+x^2) ]/[x +√(1+x^2)]
=lim(x->+∞) [1 + 1/√(1/x^2+1) ]/[x +√(1+x^2)]
=0
分子->2,分母->∞
=>L =1
L=lim(x->+∞) [x +√(1+x^2)]^(1/x)=1
擴充套件資料
求數列極限的方法:
設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:
1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。
2、函式f(x)在點x0的左右極限中至少有一個不存在。
3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。
則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。