∫{√(1+t^2)-√(1-t^2)}dt=∫√(1+t^2)dt-∫√(1-t^2)dt(1)求 ∫√(1+t^2)dt令t=tan[x],∫√(1+t^2) dt = ∫sec[x]d(tan[x]) = sec[x]tan[x] - ∫tan[x]d(sec[x]) = sec[x]tan[x] - ∫tan[x](tan[x]sec[x])dx = sec[x]tan[x] - ∫(sec[x]sec[x]-1)sec[x]dx= sec[x]tan[x] - ∫sec[x]d(tan[x])dx + ∫sec[x]dx所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2∫sec[x]dx其中∫sec[x]dx = ∫sec[x]{sec[x]+tan[x]}/{sec[x]+tan[x]} dx= ∫d{tan[x]+sec[x]}/{sec[x]+tan[x]}= ln{sec[x]+tan[x]}所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2ln{sec[x]+tan[x]} + C代回得,-∫√(1+t^2) dt =-[ t√(1+t^2) /2 + 1/2ln{t+√(1+t^2) }+ C ](2)求∫√(1-t^2)dtt=sinx,√(1-t²)=cosx則原式=∫cosxdsinx=∫cos²xdx=(1/2)∫(1-cos2x)dx=(1/2)[x+(1/2)sin2x]+c=(1/2)[x+sinxcosx]+c=(arcsint)/2+[t√(1-t²)]/2+c
∫{√(1+t^2)-√(1-t^2)}dt=∫√(1+t^2)dt-∫√(1-t^2)dt(1)求 ∫√(1+t^2)dt令t=tan[x],∫√(1+t^2) dt = ∫sec[x]d(tan[x]) = sec[x]tan[x] - ∫tan[x]d(sec[x]) = sec[x]tan[x] - ∫tan[x](tan[x]sec[x])dx = sec[x]tan[x] - ∫(sec[x]sec[x]-1)sec[x]dx= sec[x]tan[x] - ∫sec[x]d(tan[x])dx + ∫sec[x]dx所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2∫sec[x]dx其中∫sec[x]dx = ∫sec[x]{sec[x]+tan[x]}/{sec[x]+tan[x]} dx= ∫d{tan[x]+sec[x]}/{sec[x]+tan[x]}= ln{sec[x]+tan[x]}所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2ln{sec[x]+tan[x]} + C代回得,-∫√(1+t^2) dt =-[ t√(1+t^2) /2 + 1/2ln{t+√(1+t^2) }+ C ](2)求∫√(1-t^2)dtt=sinx,√(1-t²)=cosx則原式=∫cosxdsinx=∫cos²xdx=(1/2)∫(1-cos2x)dx=(1/2)[x+(1/2)sin2x]+c=(1/2)[x+sinxcosx]+c=(arcsint)/2+[t√(1-t²)]/2+c