大家都知道1+2+3+……+n=n(n+1)/2
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6,
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2,現在咱們推導
1^4+2^4+3^4+……+n^4:
我們知道(n-1)^5=n^5-5n^4+10n^3-10n^2+5n-1
那麼有
n^5-(n-1)^5=5n^4-10n^3+10n^2-5n+1
(n-1)^5-(n-2)^5=5(n-1)^4-10(n-1)^3+10(n-1)^2-5(n-1)+1
(n-2)^5-(n-3)^5=5(n-2)^4-10(n-2)^3+10(n-2)^2-5(n-2)+1
……
3^5-2^5=5*3^4-10*3^3+10*3^2-5*3+1
2^5-1^5=5*2^4-10*2^3+10*2^2-5*2+1
1^5-0^5=5*1^4-10*1^3+10*1^2-5*1+1
左邊相加等於右邊,
左邊之和為n^5,
右邊為5*(1^4+2^4+3^4+……+n^4)-10(1^3+2^3+3^3+……+n^3)+10(1^2+2^2+3^2+……+n^2)-5(1+2+3+……+n)+n
令1^4+2^4+3^4+……+n^4=M
得到n^5=5M-10[n(n+1)/2]^2+10n(n+1)(2n+1)/6-5n(n+1)/2+n,
上面的式子中有個M,解出
M=n(n+1)(2n+1)(3n^2+3n-1)/30.
即1^4+2^4+3^4+……+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30.
補:
1^5+2^5+3^5+……+n^5
=n^2(n+1)^2(2n^2+2n-1)/12
大家都知道1+2+3+……+n=n(n+1)/2
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6,
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2,現在咱們推導
1^4+2^4+3^4+……+n^4:
我們知道(n-1)^5=n^5-5n^4+10n^3-10n^2+5n-1
那麼有
n^5-(n-1)^5=5n^4-10n^3+10n^2-5n+1
(n-1)^5-(n-2)^5=5(n-1)^4-10(n-1)^3+10(n-1)^2-5(n-1)+1
(n-2)^5-(n-3)^5=5(n-2)^4-10(n-2)^3+10(n-2)^2-5(n-2)+1
……
3^5-2^5=5*3^4-10*3^3+10*3^2-5*3+1
2^5-1^5=5*2^4-10*2^3+10*2^2-5*2+1
1^5-0^5=5*1^4-10*1^3+10*1^2-5*1+1
左邊相加等於右邊,
左邊之和為n^5,
右邊為5*(1^4+2^4+3^4+……+n^4)-10(1^3+2^3+3^3+……+n^3)+10(1^2+2^2+3^2+……+n^2)-5(1+2+3+……+n)+n
令1^4+2^4+3^4+……+n^4=M
得到n^5=5M-10[n(n+1)/2]^2+10n(n+1)(2n+1)/6-5n(n+1)/2+n,
上面的式子中有個M,解出
M=n(n+1)(2n+1)(3n^2+3n-1)/30.
即1^4+2^4+3^4+……+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30.
補:
1^5+2^5+3^5+……+n^5
=n^2(n+1)^2(2n^2+2n-1)/12