算術平均數與幾何平均數區別如下:
1、二者公式的形式不同:
算術平均數( arithmetic mean),又稱均值,是統計學中最基本、最常用的一種平均指標,分為簡單算術平均數、加權算術平均數。它主要適用於數值型資料。
幾何平均數是對各變數值的連乘積開項數次方根。求幾何平均數的方法叫做幾何平均法。
3、二者的目的不同:
算術平均數:適用於主要用於未分組的原始資料。設一組資料為X1,X2,...,Xn,透過算術平均數公式可以算出這組資料的平均值(期望)。
幾何平均數:如果總水平、總成果等於所有階段、所有環節水平、成果的連乘積總和時,求各階段、各環節的一般水平、一般成果,要使用幾何平均法計算幾何平均數,而不能使用算術平均法計算算術平均數。
擴充套件資料:
1、算術平均數的具體用法:
例:某銷售小組有5名銷售員,元旦一天的銷售額分別為520元、600元、480元、750元和500元,求該日平均銷售額。
根據算術平均數公式,可計算平均銷售額=(520+600+480+750+500) / 5=570(元)
計算結果表明,元旦一天5名銷售員的平均營業額為570元。
2、幾何平均數的具體用法:
例:假定某地儲蓄年利率(按複利計算):5%持續1.5年,3%持續2.5年,2.2%持續1年。求此5年內該地平均儲蓄年利率。
解:由下圖公式
得到該地平均儲蓄年利率:
算術平均數與幾何平均數區別如下:
1、二者公式的形式不同:
2、二者的含義不同:算術平均數( arithmetic mean),又稱均值,是統計學中最基本、最常用的一種平均指標,分為簡單算術平均數、加權算術平均數。它主要適用於數值型資料。
幾何平均數是對各變數值的連乘積開項數次方根。求幾何平均數的方法叫做幾何平均法。
3、二者的目的不同:
算術平均數:適用於主要用於未分組的原始資料。設一組資料為X1,X2,...,Xn,透過算術平均數公式可以算出這組資料的平均值(期望)。
幾何平均數:如果總水平、總成果等於所有階段、所有環節水平、成果的連乘積總和時,求各階段、各環節的一般水平、一般成果,要使用幾何平均法計算幾何平均數,而不能使用算術平均法計算算術平均數。
擴充套件資料:
1、算術平均數的具體用法:
例:某銷售小組有5名銷售員,元旦一天的銷售額分別為520元、600元、480元、750元和500元,求該日平均銷售額。
根據算術平均數公式,可計算平均銷售額=(520+600+480+750+500) / 5=570(元)
計算結果表明,元旦一天5名銷售員的平均營業額為570元。
2、幾何平均數的具體用法:
例:假定某地儲蓄年利率(按複利計算):5%持續1.5年,3%持續2.5年,2.2%持續1年。求此5年內該地平均儲蓄年利率。
解:由下圖公式
得到該地平均儲蓄年利率: