正比和正比例;反比和反比例沒有區別。
正比例簡稱正比,是指兩種相關聯的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數比值一定,這兩種量就叫做成正比例的量,它們的關係叫做正比例關係。
反比例簡稱反比,指的是兩種相關聯的變數,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的乘積一定,那麼他們就叫做成反比例的量,他們的關係叫做反比例關係。
下圖中(B)為正比例關係,(C)、(D)為反比例關係。
擴充套件資料:
1、正比例函式:
一般地,兩個變數x、y之間的關係式可以表示成形如y=kx的函式(k為常數,x的次數為1,且k≠0),那麼y=kx就叫做正比例函式。
正比例函式屬一次函式,但一次函式卻不一定是正比例函式。正比例函式是一次函式的特殊形式,即一次函式 y=kx+b 中,若b=0,即所謂“y軸上的截距”為零,則為正比例函式。
正比例函式的關係式表示為:y=kx(k為比例係數)。
當k>0時(一、三象限),k的絕對值越大,影象與y軸的距離越近;函式值y隨著自變數x的增大而增大;
當K
2、反比例函式:
反比例函式的影象屬於以原點為對稱中心的中心對稱的雙曲線(hyperbola),反比例函式圖象中每一象限的每一條曲線會無限接近X軸Y軸但不會與座標軸相交(y≠0)。
一般地,如果兩個變數x、y之間的關係可以表示成y=k/x (k為常數,k≠0)的形式,那麼稱y是x的反比例函式。因為y=k/x是一個分式,所以自變數X的取值範圍是X≠0。而y=k/x有時也被寫成xy=k或y=k·x^(-1)。表示式為:x是自變數,y是因變數,y是x的函式。
正比和正比例;反比和反比例沒有區別。
正比例簡稱正比,是指兩種相關聯的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數比值一定,這兩種量就叫做成正比例的量,它們的關係叫做正比例關係。
反比例簡稱反比,指的是兩種相關聯的變數,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的乘積一定,那麼他們就叫做成反比例的量,他們的關係叫做反比例關係。
下圖中(B)為正比例關係,(C)、(D)為反比例關係。
擴充套件資料:
1、正比例函式:
一般地,兩個變數x、y之間的關係式可以表示成形如y=kx的函式(k為常數,x的次數為1,且k≠0),那麼y=kx就叫做正比例函式。
正比例函式屬一次函式,但一次函式卻不一定是正比例函式。正比例函式是一次函式的特殊形式,即一次函式 y=kx+b 中,若b=0,即所謂“y軸上的截距”為零,則為正比例函式。
正比例函式的關係式表示為:y=kx(k為比例係數)。
當k>0時(一、三象限),k的絕對值越大,影象與y軸的距離越近;函式值y隨著自變數x的增大而增大;
當K
2、反比例函式:
反比例函式的影象屬於以原點為對稱中心的中心對稱的雙曲線(hyperbola),反比例函式圖象中每一象限的每一條曲線會無限接近X軸Y軸但不會與座標軸相交(y≠0)。
一般地,如果兩個變數x、y之間的關係可以表示成y=k/x (k為常數,k≠0)的形式,那麼稱y是x的反比例函式。因為y=k/x是一個分式,所以自變數X的取值範圍是X≠0。而y=k/x有時也被寫成xy=k或y=k·x^(-1)。表示式為:x是自變數,y是因變數,y是x的函式。