tan255°
=tan(180°+75°)
=tan75°
=tan(45°+30°)
=(tan45°+tan30°)/ ( 1-tan45°·tan30°)
=(1+√3/3)/ ( 1-1x √3/3)
=[(3+√3)/3)]/[(3-√3)/3]
=(3+√3)/(3-√3)
=(3+√3)?6
=(9+6√3+3)/6
=(12+6√3)/6
=6(2+√3)/6
=2+√3
≈3.73205
擴充套件資料
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半形公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
tan255°
=tan(180°+75°)
=tan75°
=tan(45°+30°)
=(tan45°+tan30°)/ ( 1-tan45°·tan30°)
=(1+√3/3)/ ( 1-1x √3/3)
=[(3+√3)/3)]/[(3-√3)/3]
=(3+√3)/(3-√3)
=(3+√3)?6
=(9+6√3+3)/6
=(12+6√3)/6
=6(2+√3)/6
=2+√3
≈3.73205
擴充套件資料
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半形公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα