正弦定理(The Law of Sines)是三角學中的一個基本定理,它指出“在任意一個平面三角形中,各邊和它所對角的正弦值的比相等且等於外接圓的直徑”,即a/sinA = b/sinB =c/sinC = 2r=D(r為外接圓半徑,D為直徑)。正弦定理指出了任意三角形中三條邊與對應角的正弦值之間的一個關係式。由正弦函式在區間上的單調性可知,正弦定理非常好地描述了任意三角形中邊與角的一種數量關係。一般地,把三角形的三個角A、B、C和它們的對邊a、b、c叫做三角形的元素。已知三角形的幾個元素求其他元素的過程叫做解三角形。正弦定理是解三角形的重要工具。擴充套件資料:歷史上,正弦定理的幾何推導方法豐富多彩。第一種方法可以稱為 “同徑法 ”,最早為13世紀阿拉伯數學家、天文學家納綏爾丁和15世紀德國數學家雷格蒙塔努斯所採用。“同徑法 ”是將三角形兩個內角的正弦看作半徑相同的圓中的正弦線(16世紀以前,三角函式被視為線段而非比值),利用相似三角形性質得出兩者之比等於角的對邊之比。納綏爾丁同時延長兩個內角的對邊,構造半徑同時大於兩邊的圓。雷格蒙塔努斯將納綏爾丁的方法進行簡化,只延長兩邊中的較短邊,構造半徑等於較長邊的圓。17~18世紀,中國數學家、天文學家梅文鼎和英國數學家辛普森各自獨立地簡化了“同徑法”。
正弦定理(The Law of Sines)是三角學中的一個基本定理,它指出“在任意一個平面三角形中,各邊和它所對角的正弦值的比相等且等於外接圓的直徑”,即a/sinA = b/sinB =c/sinC = 2r=D(r為外接圓半徑,D為直徑)。正弦定理指出了任意三角形中三條邊與對應角的正弦值之間的一個關係式。由正弦函式在區間上的單調性可知,正弦定理非常好地描述了任意三角形中邊與角的一種數量關係。一般地,把三角形的三個角A、B、C和它們的對邊a、b、c叫做三角形的元素。已知三角形的幾個元素求其他元素的過程叫做解三角形。正弦定理是解三角形的重要工具。擴充套件資料:歷史上,正弦定理的幾何推導方法豐富多彩。第一種方法可以稱為 “同徑法 ”,最早為13世紀阿拉伯數學家、天文學家納綏爾丁和15世紀德國數學家雷格蒙塔努斯所採用。“同徑法 ”是將三角形兩個內角的正弦看作半徑相同的圓中的正弦線(16世紀以前,三角函式被視為線段而非比值),利用相似三角形性質得出兩者之比等於角的對邊之比。納綏爾丁同時延長兩個內角的對邊,構造半徑同時大於兩邊的圓。雷格蒙塔努斯將納綏爾丁的方法進行簡化,只延長兩邊中的較短邊,構造半徑等於較長邊的圓。17~18世紀,中國數學家、天文學家梅文鼎和英國數學家辛普森各自獨立地簡化了“同徑法”。