sin(π/2-a)=cos a或者sin(π/2+a)=cos a。
π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
擴充套件資料:
更多公式:
公式一
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)= -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三
任意角α與-α的三角函式值之間的關係(利用 原函式 奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot (—α) =—cotα
參考資料:
sin(π/2-a)=cos a或者sin(π/2+a)=cos a。
π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
擴充套件資料:
更多公式:
公式一
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)= -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三
任意角α與-α的三角函式值之間的關係(利用 原函式 奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot (—α) =—cotα
參考資料: