雷電是怎樣產生的,避雷針又是怎樣避雷的呢?
大氣由於宇宙射線或其它電離現象的作用,會產生正負離子。正負離子能自由運動,這就使空氣能導電。當大氣各處電位不同時,負離子向正電區運動,正離子向負電區運動,進行正負電荷中和,達到電的平衡。
所謂雷電現象,就是空中雲層積累的電荷達到頗大數量時,它與附近的帶電雲層或物體間產生很大的電勢差,形成很強的電場,兩部分異性電荷突破周圍空氣的阻礙去中和,發生強烈放電,這時在電透過的路徑上發出聲和光,就是雷電。
雷電通常發生在不同的雲塊之間,或雲的下部與地面物之間。我們要避免的只是雲和地或地上物之間的雷電。如果這塊雲的上部帶正電,下部帶負電,則地面上感應出來的電是正電,此時地面上的凸出物(房屋、樹或人體)就有可能與雲中電荷發生放電現象,遭到雷擊的災禍。
但是,在雲層裡,情況就不太一樣。雲是由許多微小的水滴組成的,離子吸附在水滴上,成為球電荷。由於水滴的質量大,行動笨拙;即使是直徑只有幾個微米的水滴,也是氣體離子的一個沉重包袱。
所以雲裡的電荷移動緩慢,不易達到電平衡。在大氣電場影響下,正負電荷在雲的上下層分別積累。常常是正電荷聚集在雲的上層,負電荷聚集在雲的下層。
當帶電的雲離地面較近時,雲和地形成一個巨大的電容器。
雲和地各是電容器的一個極,雲和地之間的大氣就是電介質。雷雨時,兩極之間的電壓差別很大,能達每米幾萬伏。
當電場強度超過空氣的介電強度時,就會把空氣擊穿,進行放電。放電時,帶電粒子撞擊空氣分子,使空氣分子電離。
在雲和地之間形成一條由電子、離子組成的電的通路。雲中的電荷就沿著這條通路入地,這就是我們看到的發自雲中而竄入地下的閃電。由於瞬時電流可達幾萬甚至幾十萬安培,閃電周圍空氣的溫度達幾萬度,由於氣體的受熱,附近氣壓突然升高到幾十以至幾百個大氣壓,巨大的氣壓向四周爆發時,發出嚇人的響聲,像爆炸一樣,這就是雷鳴。
被閃電擊中的地方,瞬時能量極大,會使所觸及的樹木房舍炸裂起火,就像命中一枚炸彈一般
裝置避雷針是避免雷擊的有效方法。在房屋最高處豎一金屬棒,棒下端連一條足夠粗的銅線,銅線下端連一塊金屬板埋入地下深處潮溼處。
金屬棒的上端須是一個尖頭或分叉為幾個尖頭。有了這樣的裝置,當空中有帶電的雲時。避雷針的尖端因靜電感應就集中了異種電荷,發生尖端放電,與雲內的電相中和,避免發生激烈的雷電、這就是避雷針能避雷的一方面。但這種作用頗慢,如果雲中積電很快,或一塊帶有大量電荷的雲突然飛來,有時來不及按上述方式中和,於是有強烈的放電,加雷電仍會發生。
但這時由於避雷針高過周圍物體,它的尖端又集中了與雲中電異號的電荷,如果雷電是在雲和地面物之間發生,放電電流主要透過避雷針流入大地,因此,不會打在房屋或附近人的身上,只會打在避雷針上了。由此可見,避雷針的尖端放電作用會減少地面物與雲之間打雷的可能性;到了不可避免時,它自己就負擔了雷的打擊,房屋與人得到了安全。
由於避雷針的構造和作用,我們要特別注意保持避雷針的良好導電性。一旦有一處聯接不好,或斷了,斷口以上的一段就成為一個隔離的導電系統。當雲中有電荷時,這隔出的部分上部感應出與雲中電異號的電荷,而下部感應出與雲中電同號的電荷,如果上部和雲中電起放電作用時,強大的放電電流只能透過建築物放出大量熱量,於是引起雷擊。
這樣不但不能避雷,反而還招來雷禍。為防意外,高大建築物最好豎起幾條避雷針。另外,每一又避雷針只能保護一定的建築面積。對於較大的建築物也需要豎起幾條避雷針。
捷徑人人愛走,電也是這樣,要走電阻最小的通路。
避雷針就是豎立在建築物最高處的一根與地相通的金屬桿。杆的上端是尖的,尖端容易放電,形成電阻小的通路。雲中的電荷可經避雷針入地,建築物即可免受雷擊。
這種避雷方法是富蘭克林發明的,所以叫富蘭克林避雷針。
這種避雷針的保護範圍有似一把沒有撐足的傘,它的保護半徑只有避雷針安裝高度的1-1。5倍。因此,當建築物很大時,就要在上面裝許多支避雷針。特別是平頂的大建築群,避雷針排列成行,宛如針林一般。
如何提高避雷針的效能,早在1914年,匈牙利物理學家愛爾·齊拉特已發現利用放射性物質能使空氣電離的原理可以增強避雷效能。
近年來隨著同位素技術應用日益普及,許多先進國家,研製出了放射性同位素避雷針。
在歐州雷電最頻繁的義大利和西班牙半島上,許多易受雷電影響的建築,如無線電發射臺、變電站、燃料油或天然氣貯存庫、軍工廠、核工廠都裝置了這種新型的避雷針。
對一些有儲存價值的古代遺蹟,如雅典的衛城、西班牙的參坦達紀念碑,也採用了這種新型的避雷針。
放射性同位素避雷針的避雷原理與富蘭克林避雷針的原理是一樣的。所不同的是前者依靠放射性同位素發射的射線使避雷針附近的空氣大量地電離,主動地開啟一條與雲中電荷相通的電的通路;而富蘭克林避雷針的尖端只能產生少量的離子。
雷電是怎樣產生的,避雷針又是怎樣避雷的呢?
大氣由於宇宙射線或其它電離現象的作用,會產生正負離子。正負離子能自由運動,這就使空氣能導電。當大氣各處電位不同時,負離子向正電區運動,正離子向負電區運動,進行正負電荷中和,達到電的平衡。
所謂雷電現象,就是空中雲層積累的電荷達到頗大數量時,它與附近的帶電雲層或物體間產生很大的電勢差,形成很強的電場,兩部分異性電荷突破周圍空氣的阻礙去中和,發生強烈放電,這時在電透過的路徑上發出聲和光,就是雷電。
雷電通常發生在不同的雲塊之間,或雲的下部與地面物之間。我們要避免的只是雲和地或地上物之間的雷電。如果這塊雲的上部帶正電,下部帶負電,則地面上感應出來的電是正電,此時地面上的凸出物(房屋、樹或人體)就有可能與雲中電荷發生放電現象,遭到雷擊的災禍。
但是,在雲層裡,情況就不太一樣。雲是由許多微小的水滴組成的,離子吸附在水滴上,成為球電荷。由於水滴的質量大,行動笨拙;即使是直徑只有幾個微米的水滴,也是氣體離子的一個沉重包袱。
所以雲裡的電荷移動緩慢,不易達到電平衡。在大氣電場影響下,正負電荷在雲的上下層分別積累。常常是正電荷聚集在雲的上層,負電荷聚集在雲的下層。
當帶電的雲離地面較近時,雲和地形成一個巨大的電容器。
雲和地各是電容器的一個極,雲和地之間的大氣就是電介質。雷雨時,兩極之間的電壓差別很大,能達每米幾萬伏。
當電場強度超過空氣的介電強度時,就會把空氣擊穿,進行放電。放電時,帶電粒子撞擊空氣分子,使空氣分子電離。
在雲和地之間形成一條由電子、離子組成的電的通路。雲中的電荷就沿著這條通路入地,這就是我們看到的發自雲中而竄入地下的閃電。由於瞬時電流可達幾萬甚至幾十萬安培,閃電周圍空氣的溫度達幾萬度,由於氣體的受熱,附近氣壓突然升高到幾十以至幾百個大氣壓,巨大的氣壓向四周爆發時,發出嚇人的響聲,像爆炸一樣,這就是雷鳴。
被閃電擊中的地方,瞬時能量極大,會使所觸及的樹木房舍炸裂起火,就像命中一枚炸彈一般
裝置避雷針是避免雷擊的有效方法。在房屋最高處豎一金屬棒,棒下端連一條足夠粗的銅線,銅線下端連一塊金屬板埋入地下深處潮溼處。
金屬棒的上端須是一個尖頭或分叉為幾個尖頭。有了這樣的裝置,當空中有帶電的雲時。避雷針的尖端因靜電感應就集中了異種電荷,發生尖端放電,與雲內的電相中和,避免發生激烈的雷電、這就是避雷針能避雷的一方面。但這種作用頗慢,如果雲中積電很快,或一塊帶有大量電荷的雲突然飛來,有時來不及按上述方式中和,於是有強烈的放電,加雷電仍會發生。
但這時由於避雷針高過周圍物體,它的尖端又集中了與雲中電異號的電荷,如果雷電是在雲和地面物之間發生,放電電流主要透過避雷針流入大地,因此,不會打在房屋或附近人的身上,只會打在避雷針上了。由此可見,避雷針的尖端放電作用會減少地面物與雲之間打雷的可能性;到了不可避免時,它自己就負擔了雷的打擊,房屋與人得到了安全。
由於避雷針的構造和作用,我們要特別注意保持避雷針的良好導電性。一旦有一處聯接不好,或斷了,斷口以上的一段就成為一個隔離的導電系統。當雲中有電荷時,這隔出的部分上部感應出與雲中電異號的電荷,而下部感應出與雲中電同號的電荷,如果上部和雲中電起放電作用時,強大的放電電流只能透過建築物放出大量熱量,於是引起雷擊。
這樣不但不能避雷,反而還招來雷禍。為防意外,高大建築物最好豎起幾條避雷針。另外,每一又避雷針只能保護一定的建築面積。對於較大的建築物也需要豎起幾條避雷針。
捷徑人人愛走,電也是這樣,要走電阻最小的通路。
避雷針就是豎立在建築物最高處的一根與地相通的金屬桿。杆的上端是尖的,尖端容易放電,形成電阻小的通路。雲中的電荷可經避雷針入地,建築物即可免受雷擊。
這種避雷方法是富蘭克林發明的,所以叫富蘭克林避雷針。
這種避雷針的保護範圍有似一把沒有撐足的傘,它的保護半徑只有避雷針安裝高度的1-1。5倍。因此,當建築物很大時,就要在上面裝許多支避雷針。特別是平頂的大建築群,避雷針排列成行,宛如針林一般。
如何提高避雷針的效能,早在1914年,匈牙利物理學家愛爾·齊拉特已發現利用放射性物質能使空氣電離的原理可以增強避雷效能。
近年來隨著同位素技術應用日益普及,許多先進國家,研製出了放射性同位素避雷針。
在歐州雷電最頻繁的義大利和西班牙半島上,許多易受雷電影響的建築,如無線電發射臺、變電站、燃料油或天然氣貯存庫、軍工廠、核工廠都裝置了這種新型的避雷針。
對一些有儲存價值的古代遺蹟,如雅典的衛城、西班牙的參坦達紀念碑,也採用了這種新型的避雷針。
放射性同位素避雷針的避雷原理與富蘭克林避雷針的原理是一樣的。所不同的是前者依靠放射性同位素發射的射線使避雷針附近的空氣大量地電離,主動地開啟一條與雲中電荷相通的電的通路;而富蘭克林避雷針的尖端只能產生少量的離子。