有一道題
證明線性方程組 X1-X2=a1 X2-X3=a2 X3-X4=a3 x4-x5=a4 X5-X1=a5 有解的充分必要條件是a1+a2+a3+a4+a5=0,
解: 增廣矩陣 =
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
-1 0 0 0 1 a5
r5+r1+r2+r3+r4
0 0 0 0 0 a1+a2+a3+a4+a5
所以方程組有解a1+a2+a3+a4+a5=0
此時, 增廣矩陣 -->
0 0 0 0 0 0
r3+r4, r2+r3,r1+r2
1 0 0 0 -1 a1+a2+a3+a4
0 1 0 0 -1 a2+a3+a4
0 0 1 0 -1 a3+a4
方程組的一般解為:
(a1+a2+a3+a4, a2+a3+a4,a3+a4, a4, 0)" + c(1,1,1,1,1)".
有一道題
證明線性方程組 X1-X2=a1 X2-X3=a2 X3-X4=a3 x4-x5=a4 X5-X1=a5 有解的充分必要條件是a1+a2+a3+a4+a5=0,
解: 增廣矩陣 =
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
-1 0 0 0 1 a5
r5+r1+r2+r3+r4
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
0 0 0 0 0 a1+a2+a3+a4+a5
所以方程組有解a1+a2+a3+a4+a5=0
此時, 增廣矩陣 -->
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
0 0 0 0 0 0
r3+r4, r2+r3,r1+r2
1 0 0 0 -1 a1+a2+a3+a4
0 1 0 0 -1 a2+a3+a4
0 0 1 0 -1 a3+a4
0 0 0 1 -1 a4
0 0 0 0 0 0
方程組的一般解為:
(a1+a2+a3+a4, a2+a3+a4,a3+a4, a4, 0)" + c(1,1,1,1,1)".