聯星是由兩顆繞著共同的重心旋轉的恆星組成。對於其中一顆來說,另一顆就是其“伴星”。相對於其他恆星來說,位置看起來非常靠近。聯星一詞是由弗里德里希·赫歇爾在1802年所創。根據他的定義,聯星系統是由兩個星體根據吸引力定律組成的一個系統。聯星有多種,一顆恆星圍繞另外一顆恆星運動,或者兩者互相圍繞,並且互相間有引力作用,也稱為物理雙星;兩顆恆星看起來靠的很近,但是實際距離卻非常遠,這稱為光學雙星。一般所說的雙星,沒有特別指明的話,都是指光學雙星。根據觀測方式不同,透過天文望遠鏡可以觀測到的雙星稱為目視雙星;只有透過分析光譜變化才能辨別的雙星稱為分光雙星。
此外,還有一顆恆星圍繞另一顆恆星運動,第三顆恆星又繞他們運動,這稱為三合星。依此類推,還有四合星等等,這些都稱為聚星。近年來天文學家們發現,大部分已知恆星都存在於聯星甚至多星系統中。聯星對於天體物理尤其重要,因為兩顆星的質量可從透過觀測旋轉軌道確定。這樣,很多獨立星體的質量也可以推算出來。
著名的聯星系統包括天狼星、南河三、大陵五以及天鵝座X-1(其中一個成員很可能是一個黑洞)。
最初,A星的質量大約為2至3個太陽質量,B星為1.5個太陽質量。 這以後,正如單個恆星演化過程一樣,質量較大的恆星演化得很快, A星首先消耗掉了大量的氫元素,其外層慢慢膨脹起來,很快膨脹為一顆紅巨星,其半徑不斷增大,而其內部已經形成了一個半徑約為太陽幾十分之一的白矮星氦核。 當A星外殼開始進入B星的引力範圍時,A星的表面物質開始受B星的引力離開A星表面流向B星表面。但由於兩星相互公轉以及B星的自轉,流來的物質並不立即落在表面,而是先在B星周圍隨B星自轉形成一個碟狀氣體盤,然後才能逐步降落在B星表面。於是A星不斷有物質轉移到B星,這使得A星的老化程序急劇加快,並以更快速度膨脹,甚至將B星的軌道吞沒。 這個過程將持續數萬年。 這以後,A星耗盡了它所有的剩餘氫,而其巨大的外殼可以伸展到十幾個太陽半徑之外,但最終大部分將被B星所吸收。此刻,A星基本上全是由氦組成了,質量僅僅剩下原來的五分之一左右,而B星質量則增至原來的二倍多。這樣,質量對比發生了明顯變化:A星成了質量較小的緻密的白矮星,而B星由於吸收了A星的大部分質量,體積增加了許多,成為雙星中質量較大的恆星。在A星周圍原來膨脹的外殼在失去膨脹力後一部分逐漸降落在小白矮星上;而B星正處於中年期,繼續其正常恆星的演化。這就是我們現在看到的天狼星及其伴星的情況。
這以後,這對雙星繼續演化,象原來一樣,質量較大的恆星將以很快的速度進行演化,並在耗盡其核心附近的氫燃料後開始了膨脹,進入紅巨星階段。此時,A星的強大引力將慢慢對B星不斷膨大的表面上的物質起作用,物質開始從B星表面迅速流向A星。 像從前一樣,流質在A星周圍形成氣體盤,並不斷降落在A星表面。以後的時間裡,B星由於丟失大量物質而缺少燃料迅速老化膨脹;A星則可能由於吸附了大量物質而塌陷成中子星甚至黑洞。B星將終於發生超新星爆發而結束其一生,把身體的大部分質量拋向宇宙,而在其中心留下一個緻密的白矮星或中子星。
聯星是由兩顆繞著共同的重心旋轉的恆星組成。對於其中一顆來說,另一顆就是其“伴星”。相對於其他恆星來說,位置看起來非常靠近。聯星一詞是由弗里德里希·赫歇爾在1802年所創。根據他的定義,聯星系統是由兩個星體根據吸引力定律組成的一個系統。聯星有多種,一顆恆星圍繞另外一顆恆星運動,或者兩者互相圍繞,並且互相間有引力作用,也稱為物理雙星;兩顆恆星看起來靠的很近,但是實際距離卻非常遠,這稱為光學雙星。一般所說的雙星,沒有特別指明的話,都是指光學雙星。根據觀測方式不同,透過天文望遠鏡可以觀測到的雙星稱為目視雙星;只有透過分析光譜變化才能辨別的雙星稱為分光雙星。
此外,還有一顆恆星圍繞另一顆恆星運動,第三顆恆星又繞他們運動,這稱為三合星。依此類推,還有四合星等等,這些都稱為聚星。近年來天文學家們發現,大部分已知恆星都存在於聯星甚至多星系統中。聯星對於天體物理尤其重要,因為兩顆星的質量可從透過觀測旋轉軌道確定。這樣,很多獨立星體的質量也可以推算出來。
著名的聯星系統包括天狼星、南河三、大陵五以及天鵝座X-1(其中一個成員很可能是一個黑洞)。
最初,A星的質量大約為2至3個太陽質量,B星為1.5個太陽質量。 這以後,正如單個恆星演化過程一樣,質量較大的恆星演化得很快, A星首先消耗掉了大量的氫元素,其外層慢慢膨脹起來,很快膨脹為一顆紅巨星,其半徑不斷增大,而其內部已經形成了一個半徑約為太陽幾十分之一的白矮星氦核。 當A星外殼開始進入B星的引力範圍時,A星的表面物質開始受B星的引力離開A星表面流向B星表面。但由於兩星相互公轉以及B星的自轉,流來的物質並不立即落在表面,而是先在B星周圍隨B星自轉形成一個碟狀氣體盤,然後才能逐步降落在B星表面。於是A星不斷有物質轉移到B星,這使得A星的老化程序急劇加快,並以更快速度膨脹,甚至將B星的軌道吞沒。 這個過程將持續數萬年。 這以後,A星耗盡了它所有的剩餘氫,而其巨大的外殼可以伸展到十幾個太陽半徑之外,但最終大部分將被B星所吸收。此刻,A星基本上全是由氦組成了,質量僅僅剩下原來的五分之一左右,而B星質量則增至原來的二倍多。這樣,質量對比發生了明顯變化:A星成了質量較小的緻密的白矮星,而B星由於吸收了A星的大部分質量,體積增加了許多,成為雙星中質量較大的恆星。在A星周圍原來膨脹的外殼在失去膨脹力後一部分逐漸降落在小白矮星上;而B星正處於中年期,繼續其正常恆星的演化。這就是我們現在看到的天狼星及其伴星的情況。
這以後,這對雙星繼續演化,象原來一樣,質量較大的恆星將以很快的速度進行演化,並在耗盡其核心附近的氫燃料後開始了膨脹,進入紅巨星階段。此時,A星的強大引力將慢慢對B星不斷膨大的表面上的物質起作用,物質開始從B星表面迅速流向A星。 像從前一樣,流質在A星周圍形成氣體盤,並不斷降落在A星表面。以後的時間裡,B星由於丟失大量物質而缺少燃料迅速老化膨脹;A星則可能由於吸附了大量物質而塌陷成中子星甚至黑洞。B星將終於發生超新星爆發而結束其一生,把身體的大部分質量拋向宇宙,而在其中心留下一個緻密的白矮星或中子星。