向量(vector)是一種既有大小又有方向的量,又稱為向量。一般來說,在物理學中稱作向量,例如速度、加速度、力等等就是這樣的量。捨棄實際含義,就抽象為數學中的概念──向量。[1] 在計算機中,向量圖可以無限放大永不變形。
向量是數學、物理學和工程科學等多個自然科學中的基本概念,指一個同時具有大小和方向的幾何物件,因常以箭頭符號標示以區別於其它量而得名。直觀上,向量通常被標示為一個帶箭頭的線段。線段的長度可以表示向量的大小,而向量的方向也就是箭頭所指的方向。物理學中的位移、速度、力、動量、磁矩、電流密度等,都是向量。與向量概念相對的是隻有大小而沒有方向的標量。如長度、體積、質量、密度、溫度等。
在數學中,向量也常稱為向量,即有方向的量。並採用更為抽象的向量空間(也稱為線性空間)來定義,而定義具有物理意義上的大小和方向的向量概念則需要引進了範數和內積的歐幾里得空間。
向量對標量求導後結果為向量。而標量對標量求導結果仍為標量。
(1)定義或解釋:有些物理量,既要有數值大小(包括有關的單位),又要有方向才能完全確定。這些量之間的運算並不遵循一般的代數法則,而遵循特殊的運演算法則。比如說位移這樣的物理量叫作物理向量。有些物理量,只具有數值大小(包括有關的單位),而不具有方向性。這些量之間的運算遵循一般的代數法則。例如溫度、質量這些物理量叫作物理標量。
(2)說明:①向量之間的運算要遵循特殊的法則。向量加法一般可用平行四邊形法則。由平行四邊形法則可推廣至三角形法則、多邊形法則或正交分解法等。向量減法是向量加法的逆運算,一個向量減去另一個向量,等於加上那個向量的負向量。即 A-B=A+(-B)。向量的乘法。向量和標量的乘積仍為向量。向量和向量的乘積,可以構成新的標量,向量間這樣的乘積叫標積;也可構成新的向量,向量間這樣的乘積叫矢積。例如,物理學中,功、功率等的計算是採用兩個向量的標積。W=F·s,P=F·v。力矩、洛倫茲力等的計算是採用兩個向量的矢積。M=r×F,F=qv×B。②物理定律的矢量表達跟座標的選擇無關,向量符號為表述物理定律提供了簡單明瞭的形式,且使這些定律的推導簡單化,因此向量是研究物理學的有用工具。
(3)向量有兩種,一種為只有大小與方向的物理量,譬如速度,我們稱之為“奇向量”;另外一種不但有大小與方向的物理量,而且還在向量間作用產生效果所需時間的一個量,譬如力,我們稱之為“偶向量”或“極限向量(即時、有上限)”,因為它們在向量間作用產生效果所需的時間是即時與光速的。
希望我能幫助你解疑釋惑。
向量(vector)是一種既有大小又有方向的量,又稱為向量。一般來說,在物理學中稱作向量,例如速度、加速度、力等等就是這樣的量。捨棄實際含義,就抽象為數學中的概念──向量。[1] 在計算機中,向量圖可以無限放大永不變形。
向量是數學、物理學和工程科學等多個自然科學中的基本概念,指一個同時具有大小和方向的幾何物件,因常以箭頭符號標示以區別於其它量而得名。直觀上,向量通常被標示為一個帶箭頭的線段。線段的長度可以表示向量的大小,而向量的方向也就是箭頭所指的方向。物理學中的位移、速度、力、動量、磁矩、電流密度等,都是向量。與向量概念相對的是隻有大小而沒有方向的標量。如長度、體積、質量、密度、溫度等。
在數學中,向量也常稱為向量,即有方向的量。並採用更為抽象的向量空間(也稱為線性空間)來定義,而定義具有物理意義上的大小和方向的向量概念則需要引進了範數和內積的歐幾里得空間。
向量對標量求導後結果為向量。而標量對標量求導結果仍為標量。
(1)定義或解釋:有些物理量,既要有數值大小(包括有關的單位),又要有方向才能完全確定。這些量之間的運算並不遵循一般的代數法則,而遵循特殊的運演算法則。比如說位移這樣的物理量叫作物理向量。有些物理量,只具有數值大小(包括有關的單位),而不具有方向性。這些量之間的運算遵循一般的代數法則。例如溫度、質量這些物理量叫作物理標量。
(2)說明:①向量之間的運算要遵循特殊的法則。向量加法一般可用平行四邊形法則。由平行四邊形法則可推廣至三角形法則、多邊形法則或正交分解法等。向量減法是向量加法的逆運算,一個向量減去另一個向量,等於加上那個向量的負向量。即 A-B=A+(-B)。向量的乘法。向量和標量的乘積仍為向量。向量和向量的乘積,可以構成新的標量,向量間這樣的乘積叫標積;也可構成新的向量,向量間這樣的乘積叫矢積。例如,物理學中,功、功率等的計算是採用兩個向量的標積。W=F·s,P=F·v。力矩、洛倫茲力等的計算是採用兩個向量的矢積。M=r×F,F=qv×B。②物理定律的矢量表達跟座標的選擇無關,向量符號為表述物理定律提供了簡單明瞭的形式,且使這些定律的推導簡單化,因此向量是研究物理學的有用工具。
(3)向量有兩種,一種為只有大小與方向的物理量,譬如速度,我們稱之為“奇向量”;另外一種不但有大小與方向的物理量,而且還在向量間作用產生效果所需時間的一個量,譬如力,我們稱之為“偶向量”或“極限向量(即時、有上限)”,因為它們在向量間作用產生效果所需的時間是即時與光速的。
希望我能幫助你解疑釋惑。