回覆列表
-
1 # 王麗紅
-
2 # 大姐
穿針引線法的具體步驟:
第一步
透過不等式的諸多性質對不等式進行移項,使得右側為0。(注意:一定要保證最高次數項的係數為正數)
例如:將x^3-2x^2-x+2>0化為(x-2)(x-1)(x+1)>0
第二步
將不等號換成等號解出所有根。
例如:(x-2)(x-1)(x+1)=0的根為:x1=2,x2=1,x3=-1
第三步
在數軸上從左到右按照大小依次標出各根。
例如:-1 1 2
第四步
畫穿根線:以數軸為標準,從“最右根”的右上方穿過根,往左下畫線,然後又穿過“次右根”上去,一上一下依次穿過各根。
第五步
觀察不等號,如果不等號為“>”,則取數軸上方,穿根線以內的範圍;如果不等號為“<”,則取數軸下方,穿根線以內的範圍。
例如:
若求(x-2)(x-1)(x+1)>0的根。
在數軸上標根得:-1 1 2
畫穿根線:由右上方開始穿根。
因為不等號為“>”則取數軸上方,穿根線以內的範圍。即:-1<x<1或x>2。
奇穿偶不穿:即假如有兩個解都是同一個數字。這個數字要按照兩個數字穿。如(x-1)^2=0 兩個解都是1 ,那麼穿的時候不要透過1。
可以簡單記為秘籍口訣:或“自上而下,從右到左,奇穿偶不穿”(也可以這樣記憶:“自上而下,自右而左,奇穿偶回” 或“奇穿偶連”)。
“穿針引線法”又稱“數軸穿根法”或“數軸標根法”。
準確的說,應該叫做“序軸標根法”。序軸:省去原點和單位,只表示數的大小的數軸。序軸上標出的兩點中,左邊的點表示的數比右邊的點表示的數小。
當高次不等式f(x)>0(或<0)的左邊整式、分式不等式φ(x)/h(x)>0(或<0)的左邊分子、分母能分解成若干個一次因式的積(x-a1)(x-a2)…(x-an)的形式,可把各因式的根標在數軸上,形成若干個區間,最右端的區間f(x)、 φ(x)/h(x)的值必為正值,從右往左通常為正值、負值依次相間,這種解不等式的方法稱為序軸標根法。
為了形象地體現正負值的變化規律,可以畫一條浪線從右上方依次穿過每一根所對應的點,穿過最後一個點後就不再變方向,這種畫法俗稱“穿針引線法“。