回覆列表
  • 1 # 孫工的文話旅行筆記

    試答:

    1, a(1) = a, a(n)為公差為r的等差數列。1-1,通項公式,a(n) = a(n-1) + r = a(n-2) + 2r = ... = a[n-(n-1)] + (n-1)r = a(1) + (n-1)r = a + (n-1)r.可用歸納法證明。n = 1 時,a(1) = a + (1-1)r = a。成立。假設 n = k 時,等差數列的通項公式成立。a(k) = a + (k-1)r則,n = k+1時,a(k+1) = a(k) + r = a + (k-1)r + r = a + [(k+1) - 1]r.通項公式也成立。因此,由歸納法知,等差數列的通項公式是正確的。1-2,求和公式,S(n) = a(1) + a(2) + ... + a(n) = a + (a + r) + ... + [a + (n-1)r] = na + r[1 + 2 + ... + (n-1)] = na + n(n-1)r/2同樣,可用歸納法證明求和公式。(略)2,a(1) = a, a(n)為公比為r(r不等於0)的等比數列。2-1,通項公式,a(n) = a(n-1)r = a(n-2)r^2 = ... = a[n-(n-1)]r^(n-1) = a(1)r^(n-1) = ar^(n-1).可用歸納法證明等比數列的通項公式。(略)2-2,求和公式,S(n) = a(1) + a(2) + ... + a(n) = a + ar + ... + ar^(n-1) = a[1 + r + ... + r^(n-1)]r 不等於 1時,S(n) = a[1 - r^n]/[1-r]r = 1時,S(n) = na.

  • 中秋節和大豐收的關聯?
  • wen wo are young歌詞英文?