回覆列表
  • 1 # 使用者240869114101

    在一個位元組裡的,原碼的我已經知道了:最大的是01111111;最小的是11111111。想知道反碼和補碼最大的和最小的 現在我們知道了計算機可以有三種編碼方式表示一個數. 對於正數因為三種編碼方式的結果都相同: [+1] = [00000001]原 = [00000001]反 = [00000001]補 所以不需要過多解釋. 但是對於負數: [-1] = [10000001]原 = [11111110]反 = [11111111]補 可見原碼, 反碼和補碼是完全不同的. 既然原碼才是被人腦直接識別並用於計算表示方式, 為何還會有反碼和補碼呢? 首先, 因為人腦可以知道第一位是符號位, 在計算的時候我們會根據符號位, 選擇對真值區域的加減. (真值的概念在本文最開頭). 但是對於計算機, 加減乘數已經是最基礎的運算, 要設計的儘量簡單. 計算機辨別"符號位"顯然會讓計算機的基礎電路設計變得十分複雜! 於是人們想出了將符號位也參與運算的方法. 我們知道, 根據運演算法則減去一個正數等於加上一個負數, 即: 1-1 = 1 + (-1) = 0 , 所以機器可以只有加法而沒有減法, 這樣計算機運算的設計就更簡單了. 於是人們開始探索 將符號位參與運算, 並且只保留加法的方法. 首先來看原碼: 計算十進位制的表示式: 1-1=0 1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2 如果用原碼錶示, 讓符號位也參與計算, 顯然對於減法來說, 結果是不正確的.這也就是為何計算機內部不使用原碼錶示一個數. 為了解決原碼做減法的問題, 出現了反碼: 計算十進位制的表示式: 1-1=0 1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0 發現用反碼計算減法, 結果的真值部分是正確的. 而唯一的問題其實就出現在"0"這個特殊的數值上. 雖然人們理解上+0和-0是一樣的, 但是0帶符號是沒有任何意義的. 而且會有[0000 0000]原和[1000 0000]原兩個編碼表示0. 於是補碼的出現, 解決了0的符號以及兩個編碼的問題: 1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]補 + [1111 1111]補 = [0000 0000]補=[0000 0000]原 這樣0用[0000 0000]表示, 而以前出現問題的-0則不存在了.而且可以用[1000 0000]表示-128: (-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]補 + [1000 0001]補 = [1000 0000]補 -1-127的結果應該是-128, 在用補碼運算的結果中, [1000 0000]補 就是-128. 但是注意因為實際上是使用以前的-0的補碼來表示-128, 所以-128並沒有原碼和反碼錶示.(對-128的補碼錶示[1000 0000]補算出來的原碼是[0000 0000]原, 這是不正確的) 使用補碼, 不僅僅修復了0的符號以及存在兩個編碼的問題, 而且還能夠多表示一個最低數. 這就是為什麼8位二進位制, 使用原碼或反碼錶示的範圍為[-127, +127], 而使用補碼錶示的範圍為[-128, 127]. 因為機器使用補碼, 所以對於程式設計中常用到的32位int型別, 可以表示範圍是: [-231, 231-1] 因為第一位表示的是符號位.而使用補碼錶示時又可以多儲存一個最小值.

  • 中秋節和大豐收的關聯?
  • 當今書壇誰的硬筆楷書比較好?