用性質化三角計算行列式, 一般是從左到右 一列一列處理
先把一個比較簡單(或小)的非零數交換到左上角(其實到最後換也行),
用這個數把第1列其餘的數消成零.
處理完第一列後, 第一行與第一列就不要管它了, 再用同樣方法處理第二列(不含第一行的數)
給你個例子看看哈
2 -5 3 1
1 3 -1 3
0 1 1 -5
-1 -4 2 -3
r1 + 2r4, r2 + r4 (用第4行的 a41=-1, 把第1列其餘數消成0. 此處也可選a21)
0 -13 7 -5
0 -1 1 0
-1 -4 2 -3 (完成後, a41=-1 所在的行和列基本不動)
r1 + 13r3, r2 + r3 (處理第2列, 用 a32=1 消 a12,a22, 不用管a42. 此處也可選a22)
0 0 20 -70
0 0 2 -5
0 1 1 -5 ( 完成. a32=1所在的第3行第4列 基本不動)
r1 - 10r2 (處理第3列, 用 a23=1 消 a13, 不用管a33, a43)
0 0 0 -20
-1 -4 2 -3 (完成, 此時是個類似三角形 ^-^ )
r1r4, r2r3 (交換一下行就完成了, 注意交換的次數會影響正負)
0 0 0 -20 (OK!)
行列式 = 40
用性質化三角計算行列式, 一般是從左到右 一列一列處理
先把一個比較簡單(或小)的非零數交換到左上角(其實到最後換也行),
用這個數把第1列其餘的數消成零.
處理完第一列後, 第一行與第一列就不要管它了, 再用同樣方法處理第二列(不含第一行的數)
給你個例子看看哈
2 -5 3 1
1 3 -1 3
0 1 1 -5
-1 -4 2 -3
r1 + 2r4, r2 + r4 (用第4行的 a41=-1, 把第1列其餘數消成0. 此處也可選a21)
0 -13 7 -5
0 -1 1 0
0 1 1 -5
-1 -4 2 -3 (完成後, a41=-1 所在的行和列基本不動)
r1 + 13r3, r2 + r3 (處理第2列, 用 a32=1 消 a12,a22, 不用管a42. 此處也可選a22)
0 0 20 -70
0 0 2 -5
0 1 1 -5 ( 完成. a32=1所在的第3行第4列 基本不動)
-1 -4 2 -3
r1 - 10r2 (處理第3列, 用 a23=1 消 a13, 不用管a33, a43)
0 0 0 -20
0 0 2 -5
0 1 1 -5
-1 -4 2 -3 (完成, 此時是個類似三角形 ^-^ )
r1r4, r2r3 (交換一下行就完成了, 注意交換的次數會影響正負)
-1 -4 2 -3
0 1 1 -5
0 0 2 -5
0 0 0 -20 (OK!)
行列式 = 40