解:6和8的最大公因數是 2 .
故答案為:2
擴充套件資料:
最大公約數(Greatest Common Divisor)指兩個或多個整數共有約數中最大的一個。
也稱最大公因數、最大公因子,a、b的最大公約數記為(a,b),同樣的,a、b、c的最大公約數記為(a,b,c),多個 整數的最大公約數也有同樣的記號。求最大公約數有多種方法,常見的有質因數分解法、短除法、輾轉相除法、更相減損法。與最大公約數相對應的概念是最小公倍數,a、b的最小公倍數記為[a,b]。
最大公約數求法
質因數分解法
最大公約數(9)質因數分解法:把每個數分別分解質因數,再把各數中的全部公有質因數提取出來連乘,所得的積就是這幾個數的 最大公約數。
例如:求24和60的最大公約數,先分解質因數,得24=2×2×2×3,60=2×2×3×5,24與60的全部公有的質因數是2、2、3,它們的積是2×2×3=12,所以,(24,60)=12。
把幾個數先分別分解質因數,再把各數中的全部公有的質因數和獨有的質因數提取出來連乘,所得的積就是這幾個數的最小公倍數。
例如:求6和15的 最小公倍數。先分解質因數,得6=2×3,15=3×5,6和15的全部公有的質因數是3,6獨有質因數是2,15獨有的質因數是5,2×3×5=30,30裡面包含6的全部質因數2和3,還包含了15的全部質因數3和5,且30是6和15的公倍數中最小的一個,所以[6,15]=30。
短除法
短除法:短除法求最大公約數,先用這幾個數的公約數連續去除,一直除到所有的商互質為止,然
後把所有的除數連乘起來,所得的積就是這幾個數的最大公約數。
短除法求最小公倍數,先用這幾個數的公約數去除每個數,再用部分數的公約數去除,並把不能整除的數移下來,一直除到所有的商中每兩個數都是 互質的為止,然後把所有的除數和商連乘起來,所得的積就是這幾個數的最小公倍數,例如,求12、15、18的最小公倍數。
短除法的本質就是質因數分解法,只是將質因數分解用短除符號來進行。
短除符號就是除號倒過來。短除就是在除法中寫 除數的地方寫兩個數共有的 質因數,然後落下兩個數被公有質因數整除的商,之後再除,以此類推,直到結果 互質為止(兩個數互質)。
而在用短除計算多個數時,對其中任意兩個數存在的因數都要算出,其它沒有這個 因數的數則原樣落下。直到剩下每兩個都是互質關係。
求最大公因數便乘一邊,求最小公倍數便乘一圈。
無論是短除法,還是分解質因數法,在質因數較大時,都會覺得困難。這時就需要用新的方法。
解:6和8的最大公因數是 2 .
故答案為:2
擴充套件資料:
最大公約數(Greatest Common Divisor)指兩個或多個整數共有約數中最大的一個。
也稱最大公因數、最大公因子,a、b的最大公約數記為(a,b),同樣的,a、b、c的最大公約數記為(a,b,c),多個 整數的最大公約數也有同樣的記號。求最大公約數有多種方法,常見的有質因數分解法、短除法、輾轉相除法、更相減損法。與最大公約數相對應的概念是最小公倍數,a、b的最小公倍數記為[a,b]。
最大公約數求法
質因數分解法
最大公約數(9)質因數分解法:把每個數分別分解質因數,再把各數中的全部公有質因數提取出來連乘,所得的積就是這幾個數的 最大公約數。
例如:求24和60的最大公約數,先分解質因數,得24=2×2×2×3,60=2×2×3×5,24與60的全部公有的質因數是2、2、3,它們的積是2×2×3=12,所以,(24,60)=12。
把幾個數先分別分解質因數,再把各數中的全部公有的質因數和獨有的質因數提取出來連乘,所得的積就是這幾個數的最小公倍數。
例如:求6和15的 最小公倍數。先分解質因數,得6=2×3,15=3×5,6和15的全部公有的質因數是3,6獨有質因數是2,15獨有的質因數是5,2×3×5=30,30裡面包含6的全部質因數2和3,還包含了15的全部質因數3和5,且30是6和15的公倍數中最小的一個,所以[6,15]=30。
短除法
短除法:短除法求最大公約數,先用這幾個數的公約數連續去除,一直除到所有的商互質為止,然
後把所有的除數連乘起來,所得的積就是這幾個數的最大公約數。
短除法求最小公倍數,先用這幾個數的公約數去除每個數,再用部分數的公約數去除,並把不能整除的數移下來,一直除到所有的商中每兩個數都是 互質的為止,然後把所有的除數和商連乘起來,所得的積就是這幾個數的最小公倍數,例如,求12、15、18的最小公倍數。
短除法的本質就是質因數分解法,只是將質因數分解用短除符號來進行。
短除符號就是除號倒過來。短除就是在除法中寫 除數的地方寫兩個數共有的 質因數,然後落下兩個數被公有質因數整除的商,之後再除,以此類推,直到結果 互質為止(兩個數互質)。
而在用短除計算多個數時,對其中任意兩個數存在的因數都要算出,其它沒有這個 因數的數則原樣落下。直到剩下每兩個都是互質關係。
求最大公因數便乘一邊,求最小公倍數便乘一圈。
無論是短除法,還是分解質因數法,在質因數較大時,都會覺得困難。這時就需要用新的方法。