一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定。對某個變數求偏導數。就把別的變數都看作常數即可。比如f(x,y)=x^2+2xy+y^2對x求偏導就是f"x=(x^2)"+2y *(x)"=2x+2y一個函式在某一點的導數描述了這個函式在這一點附近的變化率。導數的本質是透過極限的概念對函式進行區域性的線性逼近。當函式f的自變數在一點x0上產生一個增量h時,函式輸出值的增量與自變數增量h的比值在h趨於0時的極限如果存在,即為f在x0處的導數。在一元函式中,導數就是函式的變化率。對於二元函式研究它的“變化率”,由於自變數多了一個,情況就要複雜的多。在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。擴充套件資料:x方向的偏導設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域D 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f"x(x0,y0)或。函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。y方向的偏導同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f"y(x0,y0)。偏導數 f"x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f"y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f"x(x,y) 與 f"y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。參考資料:百度百科――偏導數
一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定。對某個變數求偏導數。就把別的變數都看作常數即可。比如f(x,y)=x^2+2xy+y^2對x求偏導就是f"x=(x^2)"+2y *(x)"=2x+2y一個函式在某一點的導數描述了這個函式在這一點附近的變化率。導數的本質是透過極限的概念對函式進行區域性的線性逼近。當函式f的自變數在一點x0上產生一個增量h時,函式輸出值的增量與自變數增量h的比值在h趨於0時的極限如果存在,即為f在x0處的導數。在一元函式中,導數就是函式的變化率。對於二元函式研究它的“變化率”,由於自變數多了一個,情況就要複雜的多。在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。擴充套件資料:x方向的偏導設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域D 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f"x(x0,y0)或。函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。y方向的偏導同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f"y(x0,y0)。偏導數 f"x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f"y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f"x(x,y) 與 f"y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。參考資料:百度百科――偏導數