回覆列表
  • 1 # 使用者7963379314239

    單項數值與平均值之間的差稱為離差,它是一個不可觀測的隨機變數,又稱為隨機干擾項或隨機誤差項。

    一般計算離差平方和來表示資料分佈的集中程度,反映了估計量與真實值之間的差距。可能出現結果與平均預期的偏離程度,代表風險程度的大小。在總體迴歸函式中引入隨機干擾項,主要有以下幾個方面的原因:(1)代表未知的影響因素。由於對所考察總體認識上的非完備性,許多未知的影響因素還無法引入模型,因此,只能用隨機干擾項代表這些未知的影響因素。(2)代表殘缺資料。即使所有的影響變數都能夠被包括在模型中,也會有某些變數的資料無法取得。(3)代表眾多細小影響因素。有一些影響因素已經被認識,而且其資料也可以收集到,但它們對被解釋變數的影響卻是細小的。考慮到模型的簡潔性,以及取得諸多變數資料可能帶來的較大成本,建模時往往省掉這些細小變數,而將它們的影響綜合到隨機干擾項中。(4)代表資料觀測誤差。由於某些主客觀的原因,在取得觀測資料時,往往存在測量誤差,這些觀測誤差也被歸入隨機干擾項。(5)代表模型設定誤差。由於經濟現象的複雜性,模型的真實函式形式往往是未知的,因此,實際設定的模型可能與真實的模型有偏差。隨機干擾項包括了這種模型的設定誤差。(6)變數的內在隨機性。即使模型沒有設定誤差,也不存在資料觀測誤差,由於某些變數所固有的內在隨機性,也會對被解釋變數產生隨機性影響。總之,隨機干擾項具有非常豐富的內容,在計量經濟學模型的建立中起著重要的作用。

  • 中秋節和大豐收的關聯?
  • 失眠很嚴重該如何治療?