統計學意義(p值)ZT 結果的統計學意義是結果真實程度(能夠代表總體)的一種估計方法。專業上,p值為結果可信程度的一個遞減指標,p值越大,我們越不能認為樣本中變數的關聯是總體中各變數關聯的可靠指標。p值是將觀察結果認為有效即具有總體代表性的犯錯機率。如p=0.05提示樣本中變數關聯有5%的可能是由於偶然性造成的。即假設總體中任意變數間均無關聯,我們重複類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變數關聯將等於或強於我們的實驗結果。(這並不是說如果變數間存在關聯,我們可得到5%或95%次數的相同結果,當總體中的變數存在關聯,重複研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的p值通常被認為是可接受錯誤的邊界水平。 在最後結論中判斷什麼樣的顯著性水平具有統計學意義,不可避免地帶有武斷性。換句話說,認為結果無效而被拒絕接受的水平的選擇具有武斷性。實踐中,最後的決定通常依賴於資料集比較和分析過程中結果是先驗性還是僅僅為均數之間的兩兩>比較,依賴於總體資料集裡結論一致的支援性證據的數量,依賴於以往該研究領域的慣例。通常,許多的科學領域中產生p值的結果≤0.05被認為是統計學意義的邊界線,但是這顯著性水平還包含了相當高的犯錯可能性。結果0.05≥p>0.01被認為是具有統計學意義,而0.01≥p≥0.001被認為具有高度統計學意義。但要注意這種分類僅僅是研究基礎上非正規的判斷常規。 所有的檢驗統計都是正態分佈的嗎並不完全如此,但大多數檢驗都直接或間接與之有關,可以從正態分佈中推匯出來,如t檢驗、f檢驗或卡方檢驗。這些檢驗一般都要求:所分析變數在總體中呈正態分佈,即滿足所謂的正態假設。許多觀察變數的確是呈正態分佈的,這也是正態分佈是現實世界的基本特徵的原因。當人們用在正態分佈基礎上建立的檢驗分析非正態分佈變數的資料時問題就產生了,(參閱非引數和方差分析的正態性檢驗)。這種條件下有兩種方法:一是用替代的非引數檢驗(即無分佈性檢驗),但這種方法不方便,因為從它所提供的結論形式看,這種方法統計效率低下、不靈活。另一種方法是:當確定樣本量足夠大的情況下,通常還是可以使用基於正態分佈前提下的檢驗。後一種方法是基於一個相當重要的原則產生的,該原則對正態方程基礎上的總體檢驗有極其重要的作用。即,隨著樣本量的增加,樣本分佈形狀趨於正態,即使所研究的變數分佈並不呈正態。
統計學意義(p值)ZT 結果的統計學意義是結果真實程度(能夠代表總體)的一種估計方法。專業上,p值為結果可信程度的一個遞減指標,p值越大,我們越不能認為樣本中變數的關聯是總體中各變數關聯的可靠指標。p值是將觀察結果認為有效即具有總體代表性的犯錯機率。如p=0.05提示樣本中變數關聯有5%的可能是由於偶然性造成的。即假設總體中任意變數間均無關聯,我們重複類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變數關聯將等於或強於我們的實驗結果。(這並不是說如果變數間存在關聯,我們可得到5%或95%次數的相同結果,當總體中的變數存在關聯,重複研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的p值通常被認為是可接受錯誤的邊界水平。 在最後結論中判斷什麼樣的顯著性水平具有統計學意義,不可避免地帶有武斷性。換句話說,認為結果無效而被拒絕接受的水平的選擇具有武斷性。實踐中,最後的決定通常依賴於資料集比較和分析過程中結果是先驗性還是僅僅為均數之間的兩兩>比較,依賴於總體資料集裡結論一致的支援性證據的數量,依賴於以往該研究領域的慣例。通常,許多的科學領域中產生p值的結果≤0.05被認為是統計學意義的邊界線,但是這顯著性水平還包含了相當高的犯錯可能性。結果0.05≥p>0.01被認為是具有統計學意義,而0.01≥p≥0.001被認為具有高度統計學意義。但要注意這種分類僅僅是研究基礎上非正規的判斷常規。 所有的檢驗統計都是正態分佈的嗎並不完全如此,但大多數檢驗都直接或間接與之有關,可以從正態分佈中推匯出來,如t檢驗、f檢驗或卡方檢驗。這些檢驗一般都要求:所分析變數在總體中呈正態分佈,即滿足所謂的正態假設。許多觀察變數的確是呈正態分佈的,這也是正態分佈是現實世界的基本特徵的原因。當人們用在正態分佈基礎上建立的檢驗分析非正態分佈變數的資料時問題就產生了,(參閱非引數和方差分析的正態性檢驗)。這種條件下有兩種方法:一是用替代的非引數檢驗(即無分佈性檢驗),但這種方法不方便,因為從它所提供的結論形式看,這種方法統計效率低下、不靈活。另一種方法是:當確定樣本量足夠大的情況下,通常還是可以使用基於正態分佈前提下的檢驗。後一種方法是基於一個相當重要的原則產生的,該原則對正態方程基礎上的總體檢驗有極其重要的作用。即,隨著樣本量的增加,樣本分佈形狀趨於正態,即使所研究的變數分佈並不呈正態。