lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]
=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx)]
=lim(x→0)[tanx-sinx]/2[x*ln(1+x)-x^2]
洛必達法則
=lim(x→0)[sec^2x-cosx]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)[(1-cos^3(x))/cos^2(x)]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)(1-cos^3(x))/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)[3cos^2(x)*sinx]/2[1/(1+x)^2+1/(1+x)-2]
=lim(x→0) 3x/2[(-2x^2-3x)/(1+x)^2]
=lim(x→0) 3x/2(-2x^2-3x)
=lim(x→0) 3x/(-4x^2-6x)
=-1/2
擴充套件資料
性質
1、唯一性:若數列的極限存在,則極限值是唯一的,且它的任何子列的極限與原數列的相等。
2、有界性:如果一個數列’收斂‘(有極限),那麼這個數列一定有界。
但是,如果一個數列有界,這個數列未必收斂。例如數列 :“1,-1,1,-1,……,(-1)n+1”
3、與子列的關係:數列{xn} 與它的任一平凡子列同為收斂或發散,且在收斂時有相同的極限;數列
收斂的充要條件是:數列{xn} 的任何非平凡子列都收斂。
lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]
=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx)]
=lim(x→0)[tanx-sinx]/2[x*ln(1+x)-x^2]
洛必達法則
=lim(x→0)[sec^2x-cosx]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)[(1-cos^3(x))/cos^2(x)]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)(1-cos^3(x))/2[x/(1+x)+ln(1+x)-2x]
洛必達法則
=lim(x→0)[3cos^2(x)*sinx]/2[1/(1+x)^2+1/(1+x)-2]
=lim(x→0) 3x/2[(-2x^2-3x)/(1+x)^2]
=lim(x→0) 3x/2(-2x^2-3x)
=lim(x→0) 3x/(-4x^2-6x)
=-1/2
擴充套件資料
性質
1、唯一性:若數列的極限存在,則極限值是唯一的,且它的任何子列的極限與原數列的相等。
2、有界性:如果一個數列’收斂‘(有極限),那麼這個數列一定有界。
但是,如果一個數列有界,這個數列未必收斂。例如數列 :“1,-1,1,-1,……,(-1)n+1”
3、與子列的關係:數列{xn} 與它的任一平凡子列同為收斂或發散,且在收斂時有相同的極限;數列
收斂的充要條件是:數列{xn} 的任何非平凡子列都收斂。