回覆列表
  • 1 # 小白戰神來了

    ∫ u"v dx = uv - ∫ uv" dx。

    分部積分:

    (uv)"=u"v+uv"

    得:u"v=(uv)"-uv"

    兩邊積分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx

    即:∫ u"v dx = uv - ∫ uv" dx,這就是分部積分公式

    也可簡寫為:∫ v du = uv - ∫ u dv

    擴充套件資料:

    不定積分的公式

    1、∫ a dx = ax + C,a和C都是常數

    2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a為常數且 a ≠ -1

    3、∫ 1/x dx = ln|x| + C

    4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

    5、∫ e^x dx = e^x + C

    6、∫ cosx dx = sinx + C

    7、∫ sinx dx = - cosx + C

    8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

    求不定積分的方法:

    第一類換元其實就是一種拼湊,利用f"(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。

    分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f‘(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。

  • 中秋節和大豐收的關聯?
  • 請問挫折的挫應該念一聲還是四聲?