複數的求平方的方法如下:
如:(a+bi )^2 = a^2 - b^2 + 2abi ,複數的求平方方法和實數一樣,把實部與虛部分別合併,其中 i^2 = -1。
複數的概念:
形如a+bi(a,b∈R)的數叫複數,其中i叫做虛數單位。全體複數所成的集合叫做複數集,用字母C表示。
複數的表示:
複數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做複數的代數形式,其中a叫複數的實部,b叫複數的虛部。
複數的幾何意義:
每一個複數有複平面內惟一的一個點和它對應;反過來,複平面內的每一個點,有惟一的一個複數和它對應。
複數與實數、虛數、純虛數及0的關係:
對於複數a+bi(a、b∈R),當且僅當b=0時,複數a+bi(a、b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
複數的求平方的方法如下:
如:(a+bi )^2 = a^2 - b^2 + 2abi ,複數的求平方方法和實數一樣,把實部與虛部分別合併,其中 i^2 = -1。
複數的概念:
形如a+bi(a,b∈R)的數叫複數,其中i叫做虛數單位。全體複數所成的集合叫做複數集,用字母C表示。
複數的表示:
複數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做複數的代數形式,其中a叫複數的實部,b叫複數的虛部。
複數的幾何意義:
每一個複數有複平面內惟一的一個點和它對應;反過來,複平面內的每一個點,有惟一的一個複數和它對應。
複數與實數、虛數、純虛數及0的關係:
對於複數a+bi(a、b∈R),當且僅當b=0時,複數a+bi(a、b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。