回覆列表
  • 1 # 使用者3916807372217

    1.pn結的基本特性:

    從PN接面的形成原理可以看出,要想讓PN接面導通形成電流,必須消除其空間電荷區的內部電場的阻力。很顯然,給它加一個反方向的更大的電場,即P區接外加電源的正極,N區結負極,就可以抵消其內部自建電場,使載流子可以繼續運動,從而形成線性的正向電流。而外加反向電壓則相當於內建電場的阻力更大,PN接面不能導通,僅有極微弱的反向電流(由少數載流子的漂移運動形成,因少子數量有限,電流飽和)。當反向電壓增大至某一數值時,因少子的數量和能量都增大,會碰撞破壞內部的共價鍵,使原來被束縛的電子和空穴被釋放出來,不斷增大電流,最終PN接面將被擊穿(變為導體)損壞,反向電流急劇加大。

    這就是PN接面的特性(單向導通、反向飽和漏電或擊穿導體),也是電晶體和積體電路最基礎、最重要的物理原理,所有以電晶體為基礎的複雜電路的分析都離不開它。比如二極體就是基於PN接面的單向導通原理工作的;而一個PNP結構則可以形成一個三極體,裡面包含了兩個PN接面。二極體和三極體都是電子電路里面最基本的元件。

    2.PN接面:

    採用不同的摻雜工藝,透過擴散作用,將P型半導體與N型半導體制作在同一塊半導體(通常是矽或鍺)基片上,在它們的交介面就形成空間電荷區稱為PN接面(英語:PN junction)。PN接面具有單向導電性,是電子技術中許多器件所利用的特性,例如半導體二極體、雙極性電晶體的物質基礎。

    拓展資料:

    PN接面的形成:

    PN接面是由一個N型摻雜區和一個P型摻雜區緊密接觸所構成的,其接觸介面稱為冶金結介面。

    在一塊完整的矽片上,用不同的摻雜工藝使其一邊形成N型半導體,另一邊形成P型半導體,我們稱兩種半導體的交介面附近的區域為PN接面。

    在P型半導體和N型半導體結合後,由於N型區內自由電子為多子空穴幾乎為零稱為少子,而P型區內空穴為多子自由電子為少子,在它們的交界處就出現了電子和空穴的濃度差。由於自由電子和空穴濃度差的原因,有一些電子從N型區向P型區擴散,也有一些空穴要從P型區向N型區擴散。它們擴散的結果就使P區一邊失去空穴,留下了帶負電的雜質離子,N區一邊失去電子,留下了帶正電的雜質離子。開路中半導體中的離子不能任意移動,因此不參與導電。這些不能移動的帶電粒子在P和N區交介面附近,形成了一個空間電荷區,空間電荷區的薄厚和摻雜物濃度有關。

    在空間電荷區形成後,由於正負電荷之間的相互作用,在空間電荷區形成了內電場,其方向是從帶正電的N區指向帶負電的P區。顯然,這個電場的方向與載流子擴散運動的方向相反,阻止擴散。

    另一方面,這個電場將使N區的少數載流子空穴向P區漂移,使P區的少數載流子電子向N區漂移,漂移運動的方向正好與擴散運動的方向相反。從N區漂移到P區的空穴補充了原來交介面上P區所失去的空穴,從P區漂移到N區的電子補充了原來交介面上N區所失去的電子,這就使空間電荷減少,內電場減弱。因此,漂移運動的結果是使空間電荷區變窄,擴散運動加強。

    最後,多子的擴散和少子的漂移達到動態平衡。在P型半導體和N型半導體的結合面兩側,留下離子薄層,這個離子薄層形成的空間電荷區稱為PN接面。PN接面的內電場方向由N區指向P區。在空間電荷區,由於缺少多子,所以也稱耗盡層。

  • 中秋節和大豐收的關聯?
  • 你覺得寶媽是應該在家帶娃,還是該回歸職場?