-
1 # 回來咯早就
-
2 # 使用者7538775884773
絕對零度是透過複雜的測算得來的,並且也並非“絕對地”零度。
1、逼近技術溫度紀錄:
和外太空宇宙背景輻射的 3K 溫度做比較,實現玻色-愛因斯坦凝聚的溫度170*10^(-9)K 遠小於 3K,可知在實驗上要實現玻色-愛因斯坦凝聚是非常困難的。要製造出如此極低的溫度環境,主要的技術是鐳射(鐳射)冷卻和蒸發冷卻。
向左轉|向右轉
由德國、美國、奧地利等國科學家組成的一個國際科研小組在實驗室內創造了僅僅比絕對零度高0.5納開爾文的溫度紀錄,而此前的紀錄是比絕對零度高3納開。這是人類歷史上首次達到絕對零度以上1納開以內的極端低溫。
這個科研小組在美國《科學》雜誌上發表論文介紹說,他們是在利用磁阱技術實現銫原子的玻色-愛因斯坦凝聚態(BEC)的實驗過程中創造這一紀錄的。參與研究的科學家大衛·普里查德介紹說,將氣體冷卻到極端接近絕對零度的條件對於精確測量具有重要意義,他們的此次實驗成果有助於製造更為精確的原子鐘和更為精確地測定重力等。
玻色-愛因斯坦凝聚態是物質的一種奇特的狀態,處於這種狀態的大量原子的行為像單個粒子一樣。這裡的“凝聚”與日常生活中的凝聚不同,它表示原來不同狀態的原子突然“凝聚”到同一狀態。要實現物質的該狀態一方面需要達到極低的溫度,另一方面還要求原子體系處於氣態。華裔物理學家朱棣文曾因發明了鐳射冷卻和磁阱技術製冷法而與另兩位科學家分享了1997年的諾貝爾物理學獎。
科學家說,他們希望利用新達到的最低溫度發現一些物質的新現象,諸如在此低溫下原子在同一物體表面的狀態、在限定運動通道區域時的運動狀態等。因發現了“鹼金屬原子稀薄氣體的玻色-愛因斯坦凝聚”這一新的物質狀態而獲得了2001年諾貝爾物理學獎的德國科學家評價說,首次達到絕對零度以上1納開以內的溫度是人類歷史上的一個里程碑。
慕尼黑路德維格·馬克西米利安大學物理學家烏爾裡奇·施奈德解釋說,從技術上講,人們能從一條溫度曲線上讀出一系列溫度數,但這些數字表示的只是它所含的粒子處於某個能量狀態的機率。通常,大部分粒子的能態處於平均或接近平均水平,只有少數粒子在更高能態上下。理論上,如果這種位置倒轉,使多數粒子處於高能態而少數粒子在低能態,溫度曲線也會反過來,溫度將從正到負,低於絕對零度。2001年諾貝爾物理學獎獲得者沃爾夫岡·克特勒也曾證明,在磁場系統中存在負絕對溫度。
施奈德和同事用鉀原子超冷量子氣體實現了這種負絕對零度。他們用鐳射和磁場將單個原子保持晶格排列。在正溫度下,原子之間的斥力使晶格結構保持穩定。然後他們迅速改變磁場,使原子變成相互吸引而不是排斥。施奈德說:“這種突然的轉換,使原子還來不及反應,就從它們最穩定的狀態,也就是最低能態突然跳到可能達到的最高能態。就像你正在過山谷,突然發現已在山峰。”
在正溫度下,這種逆轉是不穩定的,原子會向內坍塌。他們也同時調整勢阱鐳射場,增強能量將原子穩定在原位。這樣的結果是。這樣一來,氣體就實現了從高於絕對零度到低於絕對零度的轉變,約在負十億分之幾開氏度。
這項研究已經被髮表在很多自然科學雜誌上,這是人類在物理學上的重大突破,許多科學家表示這將為發現新的物質——暗物質提供了一條路徑。
2、1877年,玻爾茲曼發現了宏觀的熵與體系的熱力學機率的關係S=KlnQ,其中 K為 玻爾茲曼常數。1906年,能斯特提出當溫度趨近於絕對零度 T→0 時,△S / O = 0 ,即“能斯特熱原理”。普朗克在能斯特研究的基礎上,利用統計理論指出,各種物質的完美晶體,在絕對零度時,熵為零(S 0 = 0 ),這就是熱力學第三定律。
擴充套件資料:
1、最冷之地:
智利天文學家發現了宇宙最冷之地,這個宇宙最冷之地就叫做“回力棒星雲”,那裡的溫度為零下272攝氏度,是目前所知自然界中最寒冷的地方,稱為“宇宙冰盒子”。事實上,布莫讓星雲的溫度僅比絕對零度(零下273.15℃)高將近1度。這個“熱度”(因為實際上我們談到的溫度總是在絕對零度之上)是作為宇宙起源的大爆炸留存至今的熱度,事實上,這是證明大爆炸理論最顯著有效的證據之一。
2、真空能量:
在絕對零度下,任何能量都應消失。可就是在絕對零度下,依然有一種能量存在,這就是真空零點能。
真空零點能,因在絕對零度下發現粒子的振動而得名。這是量子真空中所蘊藏著的巨大本底能量。海森堡不確定性原理指出:不可能同時以較高的精確度得知一個粒子的位置和動量。因此,當溫度降到絕對零度時粒子必定仍然在振動;否則,如果粒子完全停下來,那它的動量和位置就可以同時精確的測知,而這是違反測不準原理的。這種粒子在絕對零度時的振動(零點振動)所具有的能量就是零點能。
量子真空是沒有任何實物粒子的物質狀態,其場的總能量處於最低,這是一切物質運動及能量場的最初始狀態,它的溫度自然處於絕對零度。這樣的狀態具有無限變化的潛在能力。零點能就是由(量子真空中)虛粒子,不斷產生的一對反粒子的出現和湮滅產生的。據推測,量子真空中,每立方厘米包含的能量密度有10^13焦耳。
從理論上看,真空能量以粒子的形態出現,並不斷以微小的規模形成和消失。真空中充滿著幾乎各種波長的粒子,但卡西米爾認為,如果使兩個不帶電的金屬薄盤緊緊靠在一起,較長的波長就會被排除出去。接著,金屬盤外的其他波就會產生一種往往使它們相互聚攏的力,金屬盤越靠近,兩者之間的吸引力就越強。1996 年,物理學家首次對這種所謂的卡西米爾效應進行了測定。這是證明真空零點能存在的確鑿證據。
回覆列表
絕對零度是透過複雜的測算得來的,並且也並非“絕對地”零度。
1、逼近技術溫度紀錄:
和外太空宇宙背景輻射的 3K 溫度做比較,實現玻色-愛因斯坦凝聚的溫度170*10^(-9)K 遠小於 3K,可知在實驗上要實現玻色-愛因斯坦凝聚是非常困難的。要製造出如此極低的溫度環境,主要的技術是鐳射(鐳射)冷卻和蒸發冷卻。
由德國、美國、奧地利等國科學家組成的一個國際科研小組在實驗室內創造了僅僅比絕對零度高0.5納開爾文的溫度紀錄,而此前的紀錄是比絕對零度高3納開。這是人類歷史上首次達到絕對零度以上1納開以內的極端低溫。
這個科研小組在美國《科學》雜誌上發表論文介紹說,他們是在利用磁阱技術實現銫原子的玻色-愛因斯坦凝聚態(BEC)的實驗過程中創造這一紀錄的。參與研究的科學家大衛·普里查德介紹說,將氣體冷卻到極端接近絕對零度的條件對於精確測量具有重要意義,他們的此次實驗成果有助於製造更為精確的原子鐘和更為精確地測定重力等。
玻色-愛因斯坦凝聚態是物質的一種奇特的狀態,處於這種狀態的大量原子的行為像單個粒子一樣。這裡的“凝聚”與日常生活中的凝聚不同,它表示原來不同狀態的原子突然“凝聚”到同一狀態。要實現物質的該狀態一方面需要達到極低的溫度,另一方面還要求原子體系處於氣態。華裔物理學家朱棣文曾因發明了鐳射冷卻和磁阱技術製冷法而與另兩位科學家分享了1997年的諾貝爾物理學獎。
科學家說,他們希望利用新達到的最低溫度發現一些物質的新現象,諸如在此低溫下原子在同一物體表面的狀態、在限定運動通道區域時的運動狀態等。因發現了“鹼金屬原子稀薄氣體的玻色-愛因斯坦凝聚”這一新的物質狀態而獲得了2001年諾貝爾物理學獎的德國科學家評價說,首次達到絕對零度以上1納開以內的溫度是人類歷史上的一個里程碑。
慕尼黑路德維格·馬克西米利安大學物理學家烏爾裡奇·施奈德解釋說,從技術上講,人們能從一條溫度曲線上讀出一系列溫度數,但這些數字表示的只是它所含的粒子處於某個能量狀態的機率。通常,大部分粒子的能態處於平均或接近平均水平,只有少數粒子在更高能態上下。理論上,如果這種位置倒轉,使多數粒子處於高能態而少數粒子在低能態,溫度曲線也會反過來,溫度將從正到負,低於絕對零度。2001年諾貝爾物理學獎獲得者沃爾夫岡·克特勒也曾證明,在磁場系統中存在負絕對溫度。
施奈德和同事用鉀原子超冷量子氣體實現了這種負絕對零度。他們用鐳射和磁場將單個原子保持晶格排列。在正溫度下,原子之間的斥力使晶格結構保持穩定。然後他們迅速改變磁場,使原子變成相互吸引而不是排斥。施奈德說:“這種突然的轉換,使原子還來不及反應,就從它們最穩定的狀態,也就是最低能態突然跳到可能達到的最高能態。就像你正在過山谷,突然發現已在山峰。”
在正溫度下,這種逆轉是不穩定的,原子會向內坍塌。他們也同時調整勢阱鐳射場,增強能量將原子穩定在原位。這樣的結果是。這樣一來,氣體就實現了從高於絕對零度到低於絕對零度的轉變,約在負十億分之幾開氏度。
這項研究已經被髮表在很多自然科學雜誌上,這是人類在物理學上的重大突破,許多科學家表示這將為發現新的物質——暗物質提供了一條路徑。
2、1877年,玻爾茲曼發現了宏觀的熵與體系的熱力學機率的關係S=KlnQ,其中 K為 玻爾茲曼常數。1906年,能斯特提出當溫度趨近於絕對零度 T→0 時,△S / O = 0 ,即“能斯特熱原理”。普朗克在能斯特研究的基礎上,利用統計理論指出,各種物質的完美晶體,在絕對零度時,熵為零(S 0 = 0 ),這就是熱力學第三定律。
擴充套件資料:
1、最冷之地:
智利天文學家發現了宇宙最冷之地,這個宇宙最冷之地就叫做“回力棒星雲”,那裡的溫度為零下272攝氏度,是目前所知自然界中最寒冷的地方,稱為“宇宙冰盒子”。事實上,布莫讓星雲的溫度僅比絕對零度(零下273.15℃)高將近1度。這個“熱度”(因為實際上我們談到的溫度總是在絕對零度之上)是作為宇宙起源的大爆炸留存至今的熱度,事實上,這是證明大爆炸理論最顯著有效的證據之一。
2、真空能量:
在絕對零度下,任何能量都應消失。可就是在絕對零度下,依然有一種能量存在,這就是真空零點能。
真空零點能,因在絕對零度下發現粒子的振動而得名。這是量子真空中所蘊藏著的巨大本底能量。海森堡不確定性原理指出:不可能同時以較高的精確度得知一個粒子的位置和動量。因此,當溫度降到絕對零度時粒子必定仍然在振動;否則,如果粒子完全停下來,那它的動量和位置就可以同時精確的測知,而這是違反測不準原理的。這種粒子在絕對零度時的振動(零點振動)所具有的能量就是零點能。
量子真空是沒有任何實物粒子的物質狀態,其場的總能量處於最低,這是一切物質運動及能量場的最初始狀態,它的溫度自然處於絕對零度。這樣的狀態具有無限變化的潛在能力。零點能就是由(量子真空中)虛粒子,不斷產生的一對反粒子的出現和湮滅產生的。據推測,量子真空中,每立方厘米包含的能量密度有10^13焦耳。
從理論上看,真空能量以粒子的形態出現,並不斷以微小的規模形成和消失。真空中充滿著幾乎各種波長的粒子,但卡西米爾認為,如果使兩個不帶電的金屬薄盤緊緊靠在一起,較長的波長就會被排除出去。接著,金屬盤外的其他波就會產生一種往往使它們相互聚攏的力,金屬盤越靠近,兩者之間的吸引力就越強。1996 年,物理學家首次對這種所謂的卡西米爾效應進行了測定。這是證明真空零點能存在的確鑿證據。