1、由 4^a=100,5^b=100,兩邊取以10為底對數得1/a=1/2*lg4,1/b=1/2*lg5,代入
2*(1/a+2/b)= 2*(1/2*lg4+1/2*lg25)=lg4+lg25=lg100=2.
2、化簡原式 f(x)=2倍根號2cos9x/2)*[sin(x/2)*(1/2*根號2)+cos(1/2x)*(1/2*根號2)]+tan(x/2+π/4)*tan(x/2-π/4)
=2sin(1/2x)cos(1/2x)+2cos^2(1/2x))]+tan(x/2+π/4)*tan(x/2-π/4)
=sinx+cosx+1)+tan(x/2+π/4)*tan(x/2-π/4) (這裡用二角和差正切公式展開)
=sinx+cosx+1+[(tan(1/2x)+1]/[1-tan(1/2x)]/[tan(1/2x)-1]/[1+tan(1/2x)]
=sinx+cosx+1-1
=sinx+cosx
=根號2*sin[x+π/4] 所以此函式最大值為根號2;最小正週期為2π;當0《x+π/4《π時,有
-π/4《x《3/4π 所以,當x在[-π/4,π/2] 內函式單調遞增; x在(π/2,3/4π]內函式單調遞減.
1、由 4^a=100,5^b=100,兩邊取以10為底對數得1/a=1/2*lg4,1/b=1/2*lg5,代入
2*(1/a+2/b)= 2*(1/2*lg4+1/2*lg25)=lg4+lg25=lg100=2.
2、化簡原式 f(x)=2倍根號2cos9x/2)*[sin(x/2)*(1/2*根號2)+cos(1/2x)*(1/2*根號2)]+tan(x/2+π/4)*tan(x/2-π/4)
=2sin(1/2x)cos(1/2x)+2cos^2(1/2x))]+tan(x/2+π/4)*tan(x/2-π/4)
=sinx+cosx+1)+tan(x/2+π/4)*tan(x/2-π/4) (這裡用二角和差正切公式展開)
=sinx+cosx+1+[(tan(1/2x)+1]/[1-tan(1/2x)]/[tan(1/2x)-1]/[1+tan(1/2x)]
=sinx+cosx+1-1
=sinx+cosx
=根號2*sin[x+π/4] 所以此函式最大值為根號2;最小正週期為2π;當0《x+π/4《π時,有
-π/4《x《3/4π 所以,當x在[-π/4,π/2] 內函式單調遞增; x在(π/2,3/4π]內函式單調遞減.