S^2=<(X1-X)^2+(X2-X)^2+……+(Xn-X)^2> *1/N
X是平均數
X1....XN是各個資料
N是個數
方差和標準差:樣本中各資料與樣本平均數的差的平方和的平均數叫做樣本方差;樣本方差的算術平方根叫做樣本標準差。樣本方差和樣本標準差都是衡量一個樣本波動大小的量,樣本方差或樣本標準差越大,樣本資料的波動就越大。
數學上一般用E{[X-E(X)]^2}來度量隨機變數X與其均值E(X)的偏離程度,稱為X的方差。
定義
設X是一個隨機變數,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的方差,記為D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標準差或均方差。
由方差的定義可以得到以下常用計算公式:
D(X)=E(X^2)-[E(X)]^2
方差的幾個重要性質(設一下各個方差均存在)。
(1)設c是常數,則D(c)=0。
(2)設X是隨機變數,c是常數,則有D(cX)=(c^2)D(X)。
(3)設X,Y是兩個相互獨立的隨機變數,則D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要條件是X以機率為1取常數值c,即P{X=c}=1,其中E(X)=c。
S^2=<(X1-X)^2+(X2-X)^2+……+(Xn-X)^2> *1/N
X是平均數
X1....XN是各個資料
N是個數
方差和標準差:樣本中各資料與樣本平均數的差的平方和的平均數叫做樣本方差;樣本方差的算術平方根叫做樣本標準差。樣本方差和樣本標準差都是衡量一個樣本波動大小的量,樣本方差或樣本標準差越大,樣本資料的波動就越大。
數學上一般用E{[X-E(X)]^2}來度量隨機變數X與其均值E(X)的偏離程度,稱為X的方差。
定義
設X是一個隨機變數,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的方差,記為D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標準差或均方差。
由方差的定義可以得到以下常用計算公式:
D(X)=E(X^2)-[E(X)]^2
方差的幾個重要性質(設一下各個方差均存在)。
(1)設c是常數,則D(c)=0。
(2)設X是隨機變數,c是常數,則有D(cX)=(c^2)D(X)。
(3)設X,Y是兩個相互獨立的隨機變數,則D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要條件是X以機率為1取常數值c,即P{X=c}=1,其中E(X)=c。