sin(pi/2-a)=cosa;cos(pi/2-a)=sina(即:奇變偶不變,符號看象限)
sin(pi/2+a)=cosa;cos(pi/2+a)=-sina
sin(pi-a)=sina;cos(pi-a)=-cosa
sin(pi+a)=-sina;cos(pi+a)=-cosa
sin(3pi/2-a)=-cosa;cos(3pi/2-a)=-sina
sin(3pi/2+a)=-cosa;cos(3pi/2+a)=sina
sin(2pi+a)=sina;cos(2pi+a)=cosa
sin(2*k*pi+a)=sina;cos(2*k*pi+a)=cosa
(sina)^2+(cos)^2=1;
tana=sina/cosa (前提:a不等於(pi/2)+2*k*pi)
sinA/a=sinB/b=sinC/c(正弦定理)
cosA=(b^2+c^2-a^2)/(2*b*c)(餘弦定理)
sin(a+b)=sinacosb+cosasinb;
sin(a-b)=sinacosb-cosasinb;
cos(a+b)=cosacosb-sinasinb;
cos(a-b)=cosacosb+sinasinb;
sin(2a)=2sinacosb;
cos(2a)=(cosa)^2-(sina)^2
其餘的公式都是根據上述的公式變形得到的!
sin(pi/2-a)=cosa;cos(pi/2-a)=sina(即:奇變偶不變,符號看象限)
sin(pi/2+a)=cosa;cos(pi/2+a)=-sina
sin(pi-a)=sina;cos(pi-a)=-cosa
sin(pi+a)=-sina;cos(pi+a)=-cosa
sin(3pi/2-a)=-cosa;cos(3pi/2-a)=-sina
sin(3pi/2+a)=-cosa;cos(3pi/2+a)=sina
sin(2pi+a)=sina;cos(2pi+a)=cosa
sin(2*k*pi+a)=sina;cos(2*k*pi+a)=cosa
(sina)^2+(cos)^2=1;
tana=sina/cosa (前提:a不等於(pi/2)+2*k*pi)
sinA/a=sinB/b=sinC/c(正弦定理)
cosA=(b^2+c^2-a^2)/(2*b*c)(餘弦定理)
sin(a+b)=sinacosb+cosasinb;
sin(a-b)=sinacosb-cosasinb;
cos(a+b)=cosacosb-sinasinb;
cos(a-b)=cosacosb+sinasinb;
sin(2a)=2sinacosb;
cos(2a)=(cosa)^2-(sina)^2
其餘的公式都是根據上述的公式變形得到的!