回覆列表
  • 1 # 隨便起個名1979

    量子論是現代物理學的兩大基石之一。量子論給我們提供了新的關於自然界的表述方法和思考方法。量子論揭示了微觀物質世界的基本規律,為原子物理學、固體物理學、核物理學和粒子物理學奠定了理論基礎。它能很好地解釋原子結構、原子光譜的規律性、化學元素的性質、光的吸收與輻射等。

    原子結構

    在牛頓力學(或者叫經典力學)體系中,能量的吸收和釋放是連續的,物質可以吸收任意大小的能量。後來我們發現,其實能量真實的吸收和釋放,只能夠以某個的量級(hv)為最小單位,一份一份的吸收和釋放,h也就是量子力學裡最常用到的普朗克常數,v為電磁頻率。由於普朗克常數的數量級很小(10的-34次方數量級),這就導致了牛頓力學在大尺度上和實驗符合的很好,但在小尺度上偏差很大。所以薛定諤在普朗克的量子理論(能量一份一份的傳遞)體系上建立了薛定諤方程,從而開闢了量子力學的伊始。

    量子理論的發展與建立

    在19世紀末,經典物理學理論已經發展到相當完備的階段,幾個主要部門——力學,熱力學和分子運動論,電磁學以及光學,都已經建立了完整的理論體系,在應用上也取得了巨大成果,其主要標誌是:物體的機械運動在其速度遠小於光速的情況下,嚴格遵守牛頓力學的規律;電磁現象總結為麥克斯韋方程組;光現象有光的波動理論,最後也歸結為麥克斯韋方程組;熱現象有熱力學和統計物理的理論。

    在當時看來,物理學的發展似乎已達到了巔峰,於是,多數物理學家認為物理學的重要定律均已找到,偉大的發現不會再有了,理論已相當完善了,以後的工作無非是在提高實驗精度和理論細節上作些補充和修正,使常數測得更精確而已。英國著名物理學家開爾文在一篇瞻望20世紀物理學的文章中,就曾談到:“在已經基本建成的科學大廈中,後輩物理學家只要做一些零碎的修補工作就行了。”

    然而,正當物理學界沉浸在滿足的歡樂之中的時候,從實驗上陸續出現了一系列重大發現,如固體比熱、黑體輻射、光電效應、原子結構……

    這些新現象都涉及物質內部的微觀過程,用已經建立起來的經典理論進行解釋顯得無能為力。特別是關於黑體輻射的實驗規律,運用經典理論得出的瑞利-金斯公式,雖然在低頻部分與實驗結果符合得比較好,但是隨著頻率的增加,輻射能量單調地增加,在高頻部分趨於無限大,即在紫色一端發散。這一情況被埃倫菲斯特稱為“紫外災難”。對邁克爾遜-莫雷實驗所得出的“零結果”更是令人費解,實驗結果表明,根本不存在“以太漂移”。這引起了物理學家的震驚,反映出經典物理學面臨著嚴峻的挑戰。

    這兩件事被當時物理學界稱為“在物理學晴朗的天空的遠處還有兩朵小小的,令人不安的烏雲”。然而就是這兩朵小小的烏雲,給物理學帶來了一場深刻的革命。

  • 中秋節和大豐收的關聯?
  • 盧象升率親兵力戰而亡,你怎麼看?