回覆列表
-
1 # 小紅的甜心
-
2 # TonyDeng
最基礎的是根據定義來算。人腦算的話把4位二進位制數對十六進位制的16個符號對照表背熟了進行翻譯。如果用電腦的話,計算器直接有程式設計師專用模式,各種禁制所見即所得。普通函式式計算器也可以轉換。
最基礎的是根據定義來算。人腦算的話把4位二進位制數對十六進位制的16個符號對照表背熟了進行翻譯。如果用電腦的話,計算器直接有程式設計師專用模式,各種禁制所見即所得。普通函式式計算器也可以轉換。
一。進位制概念
1。 十進位制
十進位制使用十個數字(0、1、2、3、4、5、6、7、8、9)記數,基數為10,逢十進一。
歷史上第一臺電子數字計算機ENIAC是一臺十進位制機器,其數字以十進位制表示,並以十進位制形式運算。設計十進位制機器比設計二進位制機器複雜得多。而自然界具有兩種穩定狀態的元件普遍存在,如開關的開和關,電路的通和斷,電壓的高和低等,非常適合表示計算機中的數。設計過程簡單,可靠性高。因此,現在改為二進位制計算機。
2。 二進位制
二進位制以2為基數,只用0和1兩個數字表示數,逢2進一。
二進位制與遵循十進位制數遵循一樣的運算規則,但顯得比十進位制更簡單。例如:
(1)加法:0+0=0 0+1=1 1+0=1 1+1=0
(2)減法:0-0=0 1-1=01-0=1 0-1=1
(3)乘法:0*0=0 0*1=01*0=0 1*1=1
(4)除法:0/1=0 1/1=1,除數不能為0
3。 八進位制
所謂八進位制,就是其基數為8,基數值可以取0、1、2、3、4、5、6、7共8個值,逢八進一。
八進位制與十進位制運算規則一樣。那麼為什麼要用八進位制呢?難道要設計八進位制的計算機麼?實際上,八進位制與十六進位制的引用,主要是為了書寫和表示方便,因為二進位制表示位數比較長。如:(1024)10 用二進位制表示為 (10000000000)2,共有11個數字,用八進位制表示為(2000)8。更重要的是,由於二進位制與八進位制存在在一種對等關係,每三位二進位制與一位八進位制數完全對等(23=8)。所以二進位制和十進位制在運算上無區別,而時進位制不具備這一優點。
4。 十六進位制
十六進位制應用也是非常廣泛的一種計數制。在使用者看來,十六進位制是二進位制數的一種更加緊湊的一種表示方法。
基數為:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F,逢十進一。在十六進位制系統中,數值為10到15的數分別用A、B、C、D、E、F表示。
二進位制數及與之等值的八進位制、十進位制和十六進位制數
二進位制 八進位制 十進位制 十六進位制
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F
二。進位制轉換
1。二進位制與十進位制數間的轉換
(1)二進位制轉換為十進位制
將每個二進位制數按權展開後求和即可。請看例題:
把二進位制數(101.101)2=1*22+0*21+1*20+1*2-1+0*2-2+1*2-3=(5.625)10
(2)十進位制轉換為二進位制
一般需要將十進位制數的整數部分與小數部分分開處理。
整數部分計算方法:除2取餘法請看例題:
十進位制數(53)10的二進位制值為(110101)2
小數部分計算方法:乘2取整法,即每一步將十進位制小數部分乘以2,所得積的小數點左邊的數字(0或1)作為二進位制表示法中的數字,第一次乘法所得的整數部分為最高位。請看例題:
將(0.5125)10轉換成二進位制。(0.5125)10=(0.101)2
2。 八進位制、十六進位制與十六進位制間的轉換
八進位制、十六進位制與十六進位制之間的轉換方法與二進位制,同十進位制之間的轉換方法類似。例如:
(73)8=7*81+3=(59)10
(0.56)8=5*8-1+6*8-2=(0.71875)10
(12A)16=1*162+2*161+A*160=(298)10
(0.3C8)16=3*16-1+12*16-2+8*16-3=(0.142578125)10
十進位制整數→→→→→八進位制方法:“除8取餘”
十進位制整數→→→→→十六進位制方法:“除16取餘” 例如:
(171)10=(253)8
(2653)10=(A5D)16
十進位制小數→→→→→八進位制小數 方法:“乘8取整”
十進位制小數→→→→→十六進位制小數方法:“乘16取整”例如:
(0。71875)10=(0.56)8
(0.142578125)10=(0.3C8)16
3.非十進位制數之間的轉換
(1)二進位制數與八進位制數之間的轉換
轉換方法是:以小數點為界,分別向左右每三位二進位制數合成一位八進位制數,或每一位八進位制數展成三位二進位制數,不足三位者補0。例如:
(423。45)8=(100 010 011.100 101)2
(1001001.1101)2=(001 001 001.110 100)2=(111.64)8
2。二進位制與十六進位制轉換
轉換方法:以小數點為界,分別向左右每四位二進位制合成一位十六進位制數,或每一位十六進位制數展成四位二進位制數,不足四位者補0。例如:
(ABCD。EF)16=(1010 1011 1100 1101.1110 1111)2
(101101101001011.01101)2=(0101 1011 0100 1011.0110 1000)2=(5B4B。68)16