三角形的面積=底×高÷2。公式S= a×h÷2 正方形的面積=邊長×邊長公式S= a×a 長方形的面積=長×寬公式S= a×b 平行四邊形的面積=底×高公式S= a×h 梯形的面積=(上底+下底)×高÷2 公式S=(a+b)h÷2 內角和:三角形的內角和=180度。 長方體的體積=長×寬×高公式:V=abh 長方體(或正方體)的體積=底面積×高公式:V=abh 正方體的體積=稜長×稜長×稜長公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr 圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式: S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。 分數的除法則:除以一個數等於乘以這個數的倒數。 讀懂理解會應用以下定義定理性質公式 一、算術方面 1、加法交換律:兩數相加交換加數的位置,和不變。 2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。 3、乘法交換律:兩數相乘,交換因數的位置,積不變。 4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。 5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。 如:(2+4)×5=2×5+4×5 6、除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 7、什麼麼叫等式?等號左邊的數值與等號右邊的數值相等的式子。
三角形的面積=底×高÷2。公式S= a×h÷2 正方形的面積=邊長×邊長公式S= a×a 長方形的面積=長×寬公式S= a×b 平行四邊形的面積=底×高公式S= a×h 梯形的面積=(上底+下底)×高÷2 公式S=(a+b)h÷2 內角和:三角形的內角和=180度。 長方體的體積=長×寬×高公式:V=abh 長方體(或正方體)的體積=底面積×高公式:V=abh 正方體的體積=稜長×稜長×稜長公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr 圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式: S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。 分數的除法則:除以一個數等於乘以這個數的倒數。 讀懂理解會應用以下定義定理性質公式 一、算術方面 1、加法交換律:兩數相加交換加數的位置,和不變。 2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。 3、乘法交換律:兩數相乘,交換因數的位置,積不變。 4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。 5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。 如:(2+4)×5=2×5+4×5 6、除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 7、什麼麼叫等式?等號左邊的數值與等號右邊的數值相等的式子。