對數的性質及推導 定義: 若a^n=b(a>0且a≠1) 則n=log(a)(b) 基本性質: 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M) log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推導 1、因為n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。 2、因為a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性質1(換掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指數的性質 a^[log(a)(MN)] = a^{[log(a)(M)] [log(a)(N)]} 兩種方法只是性質不同,採用方法依實際情況而定 又因為指數函式是單調函式,所以 log(a)(MN) = log(a)(M) log(a)(N) 4、與(3)類似處理 MN=M÷N 由基本性質1(換掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指數的性質 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因為指數函式是單調函式,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、與(3)類似處理 M^n=M^n 由基本性質1(換掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指數的性質 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因為指數函式是單調函式,所以 log(a)(M^n)=nlog(a)(M) 基本性質4推廣 log(a^n)(b^m)=m/n*[log(a)(b)] 推導如下: 由換底公式(換底公式見下面)[lnx是log(e)(x),e稱作自然對數的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 換底公式的推導: 設e^x=b^m,e^y=a^n 則log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性質4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由換底公式 log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性質及推導 完)
對數的性質及推導 定義: 若a^n=b(a>0且a≠1) 則n=log(a)(b) 基本性質: 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M) log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推導 1、因為n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。 2、因為a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性質1(換掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指數的性質 a^[log(a)(MN)] = a^{[log(a)(M)] [log(a)(N)]} 兩種方法只是性質不同,採用方法依實際情況而定 又因為指數函式是單調函式,所以 log(a)(MN) = log(a)(M) log(a)(N) 4、與(3)類似處理 MN=M÷N 由基本性質1(換掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指數的性質 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因為指數函式是單調函式,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、與(3)類似處理 M^n=M^n 由基本性質1(換掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指數的性質 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因為指數函式是單調函式,所以 log(a)(M^n)=nlog(a)(M) 基本性質4推廣 log(a^n)(b^m)=m/n*[log(a)(b)] 推導如下: 由換底公式(換底公式見下面)[lnx是log(e)(x),e稱作自然對數的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 換底公式的推導: 設e^x=b^m,e^y=a^n 則log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性質4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由換底公式 log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性質及推導 完)