首頁>Club>
4
回覆列表
  • 1 # zyyuo49361

    (X+12)x(X-15)=0X=15;X=-12方程(equation)是指含有未知數的等式。是表示兩個數學式(如兩個數、函式、量、運算)之間相等關係的一種等式,使等式成立的未知數的值稱為“解”或“根”。求方程的解的過程稱為“解方程”。透過方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多種形式,如一元一次方程、二元一次方程等等,還可組成方程組求解多個未知數。方程一詞出自古代數學專著《九章算術》,其第八卷即名“方程”。“方”意為並列,“程”意為用算籌表示豎式。卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九鬥;上禾二秉,中禾三秉,下禾一秉,實三十四鬥;上禾一秉,中禾二秉,下禾三秉,實二十六鬥。問上、中、下禾實一秉各幾何?(現今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39鬥;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34鬥;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26鬥。問1捆上等黍、1捆中等黍、1捆下等黍各能打出多少鬥黍?)答曰:上禾一秉,九鬥、四分鬥之一,中禾一秉,四鬥、四分鬥之一,下禾一秉,二斗、四分鬥之三。方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九鬥,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。求中禾,以法乘中行下實,而除下禾之實。餘如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。餘如上禾秉數而一,即上禾之實。實皆如法,各得一斗。以上是出自《九章算術》中的三元一次方程組,並展示了用“遍乘直除”來消元以解此方程組。魏晉時期的大數學家劉徽在公元263年前後為《九章算術》作了大量註釋,介紹了方程組:二物者再程,三物者三程,皆如物數程之。並列為行,故謂之方程。他還創立了比“遍乘直除”更簡便的“互乘相消”法來解方程組。

  • 中秋節和大豐收的關聯?
  • 含“地”的詞語?