電流是一群移動的電荷。電流或移動的電荷,會在周圍產生磁場。很多種粒子具有內秉的磁矩──自旋磁矩(spin magnetic moment)。這些磁矩,會在四周產生磁場。
對於磁性物質,艾爾磁電磁極化的主要源頭是以原子核為中心的電子軌域運動,和電子的內秉磁矩(請參閱條目電子磁偶極矩(Electron magnetic dipole moment))。與這些源頭相比,核子的核子磁矩(nuclear magnetic moment)顯得很微弱,強度是電子磁矩的幾千分之一。當做一般運算時,可以忽略核子磁矩。但是,核子磁矩在某些領域很有用途,例如,核磁共振、核磁共振成像。
磁有兩種源頭:
電流是一群移動的電荷。電流或移動的電荷,會在周圍產生磁場。很多種粒子具有內秉的磁矩──自旋磁矩(spin magnetic moment)。這些磁矩,會在四周產生磁場。
對於磁性物質,艾爾磁電磁極化的主要源頭是以原子核為中心的電子軌域運動,和電子的內秉磁矩(請參閱條目電子磁偶極矩(Electron magnetic dipole moment))。與這些源頭相比,核子的核子磁矩(nuclear magnetic moment)顯得很微弱,強度是電子磁矩的幾千分之一。當做一般運算時,可以忽略核子磁矩。但是,核子磁矩在某些領域很有用途,例如,核磁共振、核磁共振成像。
通常而言,在物質內部超多數量的電子,它們各自的磁矩(軌域磁矩和內稟磁矩)會互相抵銷。這是因為兩種機制:一種機制是遵守泡利不相容原理的後果,匹配成對 的電子都具有彼此方向相反的內秉磁矩;另一種機制是電子趨向於填滿次殼層,達成淨軌域運動為零。對於這兩種機制,電子排列會使得每一個電子的磁矩被完全抵 銷。當然,不是每一種物質都具有這麼理想的屬性,但甚至當電子組態仍有尚未配對的電子或尚未填滿的次殼層,通常,在物質內部的各個電子,會貢獻出隨機方向 的磁矩,結果是這些物質不具有磁性。
但是,有時候,或許是自發性效應,或許是由於外磁場的施加,物質內的電子磁矩會整齊地排列起來。由於這動作,很可能會造成強烈的淨磁矩與淨磁場。
由於前面表述的原因,物質的磁行為與其結構有關,特別是其電子組態。在高溫狀況,隨機的熱運動會使得電子磁矩的整齊排列更加困難。