能
ΔABC是直角三角形,作AB的垂直平分線n交BC於D
∴ AD=BD(線段垂直平分線上的點到這條線段兩端點的距離相等)
以DB為半徑,D為圓心畫弧,與BC在D的另一側交於C"
∴DC’=AD=BD∴∠BAD=∠ABD ∠C’AD=∠AC’D (等邊對等角)
又∵∠BAD+∠ABD+∠C’AD+∠AC’D =180°(三角形內角和定理)
∴∠BAD+∠C’AD=90° 即:∠BAC’=90°
又∵∠BAC=90°
∴∠BAC=∠BAC’
∴C與C’在直線AC上
又∵C與C’在直線BD上,AC與BD相交
∴C與C’重合(也可用垂直公理證明 :假使C與C’不重合 由於CA⊥AB,C’A⊥AB 故過A有CA、C’A兩條直線與AB垂直 這就與垂直公理矛盾 ∴假設不成立 ∴C與C’重合)
∴DC=AD=BD∴AD是BC上的中線且AD=BC/2這就是直角三角形斜邊上的中線定理
擴充套件資料:
直角三角形的判定:
1、若一個三角形30°內角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
2、若兩直線相交且它們的斜率之積互為負倒數,則兩直線互相垂直。那麼這個三角形為直角三角形。
直角三角形具有一些特殊的性質:
1、直角三角形兩直角邊的平方和等於斜邊的平方。
2、在直角三角形中,兩個銳角互餘。
3、直角三角形的兩直角邊的乘積等於斜邊與斜邊上高的乘積。
能
證明過程ΔABC是直角三角形,作AB的垂直平分線n交BC於D
∴ AD=BD(線段垂直平分線上的點到這條線段兩端點的距離相等)
以DB為半徑,D為圓心畫弧,與BC在D的另一側交於C"
∴DC’=AD=BD∴∠BAD=∠ABD ∠C’AD=∠AC’D (等邊對等角)
又∵∠BAD+∠ABD+∠C’AD+∠AC’D =180°(三角形內角和定理)
∴∠BAD+∠C’AD=90° 即:∠BAC’=90°
又∵∠BAC=90°
∴∠BAC=∠BAC’
∴C與C’在直線AC上
又∵C與C’在直線BD上,AC與BD相交
∴C與C’重合(也可用垂直公理證明 :假使C與C’不重合 由於CA⊥AB,C’A⊥AB 故過A有CA、C’A兩條直線與AB垂直 這就與垂直公理矛盾 ∴假設不成立 ∴C與C’重合)
∴DC=AD=BD∴AD是BC上的中線且AD=BC/2這就是直角三角形斜邊上的中線定理
擴充套件資料:
直角三角形的判定:
1、若一個三角形30°內角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
2、若兩直線相交且它們的斜率之積互為負倒數,則兩直線互相垂直。那麼這個三角形為直角三角形。
直角三角形具有一些特殊的性質:
1、直角三角形兩直角邊的平方和等於斜邊的平方。
2、在直角三角形中,兩個銳角互餘。
3、直角三角形的兩直角邊的乘積等於斜邊與斜邊上高的乘積。