回覆列表
  • 1 # 使用者2458114238191884

    法向量

      法向量是空間解析幾何的一個概念,垂直於平面的直線所表示的向量為該平面的法向量。由於空間內有無數個直線垂直於已知平面,而且每條直線可以存在不同的法向量;因此一個平面都存在無數個法向量,但是這些法向量之間相互平行。從理論上述,空間零向量是任何平面的法向量,但是由於零向量不能表示平面的資訊。一般不選擇零向量為平面的法向量。

      如果已知直線與平面垂直,可以取已知直線的兩點構成的向量作為法向量;如果不存在這樣的直線,可用設元法求一個平面的法向量;步驟如下:首先設平面的法向量m(x,y,z),然後尋找平面內任意兩個不共線的向量AB(x1,y1,z1)和CD(x2,y2,z2)。由於平面法向量垂直於平面內所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0。由於上面解法存在三個未知數兩個方程(不能透過增加新的向量和方程求解,因為其它方程和上述兩個方程是等價的),無法得到唯一的法向量(因為法向量不是唯一的)。為了得到確定法向量,可採用固定z=1(也可以固定x=1或y=1)或者模等於1的方法(單位法向量),但是這步並不是必須的。因為確定法向量和不確定法向量的作用是一樣的。

      法向量的主要應用如下:

      1、求斜線與平面所成的角:求出平面法向量和斜線的夾角,這個角和斜線與平面所成的角互餘。利用這個原理也可以證明線面平行;

      2、求二面角:求出兩個平面的法向量所成的角,這個角與二面角相等或互補;

      3、點到面的距離:任一斜線(平面為一點與平面內的連線)在法向量方向的射影;如點B到平面α的距離d=|BD·n|/|n|(等式右邊全為向量,D為平面內任意一點,向量n為平面α的法向量)。利用這個原理也可以求異面直線的距離

      法向量方法是高考數學可以採用的方法之一,他的優點在於思路簡單,容易操作。只要能夠建立出直角座標系,都可以寫出最後答案。缺點在於同一般立體幾何方法相比,其計算量巨大,特別是在計算二面角的時候。

  • 中秋節和大豐收的關聯?
  • 鋤大地同花順和葫蘆誰最大?