回覆列表
  • 1 # 使用者5443769950533

    1、利用有原函式存在定理:原函式存在定理:若f(x)在[a,b]上連續,則必存在原函式。

    2、如果f(x)不連續,有第一類可去、跳躍間斷點或第二類無窮間斷點,那麼包含此間斷點的區間內,一定不存在原函式;

    3、如果f(x)不連續,有第二類振盪間斷點,那麼包含此間斷點的區間內,原函式可能存在,也可能不存在。

    在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 F ,即F ′ = f。不定積分和定積分間的關係由微積分基本定理確定。其中F是f的不定積分。

    擴充套件資料:

    求一個函式的原函式:

    設F(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式F(x)+ C(其中,C為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=F(x)+C。

    其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,C叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。

    由定義可知:求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數C就得到函式f(x)的不定積分。

  • 中秋節和大豐收的關聯?
  • 如何評價褚時健的一生?給我們什麼啟示?