回覆列表
  • 1 # dyloz29103

    證法5(歐幾里得的證法)  《幾何原本》中的證明   在歐幾里得的《幾何原本》一書中提出勾股定理由以下證明後可成立。 設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直於對邊上的正方形。此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。   在正式的證明中,我們需要四個輔助定理如下:   如果兩個三角形有兩組對應邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理) 三角形面積是任一同底同高之平行四邊形面積的一半。 任意一個正方形的面積等於其二邊長的乘積。 任意一個四方形的面積等於其二邊長的乘積(據輔助定理3)。 證明的概念為:把上方的兩個正方形轉換成兩個同等面積的平行四邊形,再旋轉並轉換成下方的兩個同等面積的長方形。   其證明如下:   設△ABC為一直角三角形,其直角為CAB。 其邊為BC、AB、和CA,依序繪成四方形CBDE、BAGF和ACIH。 畫出過點A之BD、CE的平行線。此線將分別與BC和DE直角相交於K、L。 分別連線CF、AD,形成兩個三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是線性對應的,同理可證B、A和H。 ∠CBD和∠FBA皆為直角,所以∠ABD等於∠FBC。 因為 AB 和 BD 分別等於 FB 和 BC,所以△ABD 必須相等於△FBC。 因為 A 與 K 和 L是線性對應的,所以四方形 BDLK 必須二倍面積於△ABD。 因為C、A和G有共同線性,所以正方形BAGF必須二倍面積於△FBC。 因此四邊形 BDLK 必須有相同的面積 BAGF = AB^2。 同理可證,四邊形 CKLE 必須有相同的面積 ACIH = AC^2。 把這兩個結果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由於BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由於CBDE是個正方形,因此AB^2 + AC^2= BC^2。 此證明是於歐幾里得《幾何原本》一書第1.47節所提出的

  • 中秋節和大豐收的關聯?
  • 懷孕初期能吃冷盤嗎?