Fv/Fm反映植物的潛在最大光合能力經過充分暗適應後,所有電子門均處於開放態,開啟測量光得到Fo,此時給出一個飽和脈衝,所有的電子門就都將該用於光合作用的能量轉化為了熒光和熱,此時得到的葉綠素熒光為Fm。根據Fm和Fo可以計算出PS II的最大量子產量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潛在最大光合能力。在光照下光合作用進行時,只有部分電子門處於開放態。如果給出一個飽和脈衝,本來處於開放態的電子門將該用於光合作用的能量轉化為了葉綠素熒光和熱,此時得到的葉綠素熒光為Fm’。根據Fm’和F可以求出在照光條件下PSII反應中心部分關閉的情況下的實際原初光能捕獲效率=ΦPSII=ΔF/Fm’=(Fm’-F)/Fm’,它反映了植物目前的實際光合效率。在光照下光合作用進行時,只有部分電子門處於關閉態,實時熒光F比Fm要低,也就是說發生了熒光淬滅(quenching)。植物吸收的光能只有3條去路:光合作用、葉綠素熒光和熱。根據能量守恆:1=光合作用+葉綠素熒光+熱。可以得出:葉綠素熒光=1-光合作用-熱。也就是說,葉綠素熒光產量的下降(淬滅)有可能是由光合作用的增加或熱耗散的增加引起的。由光合作用的引起的熒光淬滅稱之為光化學淬滅(photochemical quenching, qP);由熱耗散引起的熒光淬滅稱之為非光化學淬滅(non-photochemical quenching, qN或NPQ)。光化學淬滅反映了植物光合活性的高低;非光化學淬滅反映了植物耗散過剩光能為熱的能力,也就是光保護能力。光照狀態下開啟飽和脈衝時,電子門被完全關閉,光合作用被暫時抑制,也就是說光化學淬滅被全部抑制,但此時熒光值還是比Fm低,也就是說還存在熒光淬滅,這些剩餘的熒光淬滅即為非光化學淬滅。淬滅係數的計算公式為:qP=(Fm’-Fs)/Fv’=1-(Fs-Fo’)/(Fm’-Fo’);qN=(Fv-Fv’)/Fv=1-(Fm’-Fo’)/(Fm-Fo);NPQ=(Fm-Fm’)/Fm’=Fm/Fm’-1。
Fv/Fm反映植物的潛在最大光合能力經過充分暗適應後,所有電子門均處於開放態,開啟測量光得到Fo,此時給出一個飽和脈衝,所有的電子門就都將該用於光合作用的能量轉化為了熒光和熱,此時得到的葉綠素熒光為Fm。根據Fm和Fo可以計算出PS II的最大量子產量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潛在最大光合能力。在光照下光合作用進行時,只有部分電子門處於開放態。如果給出一個飽和脈衝,本來處於開放態的電子門將該用於光合作用的能量轉化為了葉綠素熒光和熱,此時得到的葉綠素熒光為Fm’。根據Fm’和F可以求出在照光條件下PSII反應中心部分關閉的情況下的實際原初光能捕獲效率=ΦPSII=ΔF/Fm’=(Fm’-F)/Fm’,它反映了植物目前的實際光合效率。在光照下光合作用進行時,只有部分電子門處於關閉態,實時熒光F比Fm要低,也就是說發生了熒光淬滅(quenching)。植物吸收的光能只有3條去路:光合作用、葉綠素熒光和熱。根據能量守恆:1=光合作用+葉綠素熒光+熱。可以得出:葉綠素熒光=1-光合作用-熱。也就是說,葉綠素熒光產量的下降(淬滅)有可能是由光合作用的增加或熱耗散的增加引起的。由光合作用的引起的熒光淬滅稱之為光化學淬滅(photochemical quenching, qP);由熱耗散引起的熒光淬滅稱之為非光化學淬滅(non-photochemical quenching, qN或NPQ)。光化學淬滅反映了植物光合活性的高低;非光化學淬滅反映了植物耗散過剩光能為熱的能力,也就是光保護能力。光照狀態下開啟飽和脈衝時,電子門被完全關閉,光合作用被暫時抑制,也就是說光化學淬滅被全部抑制,但此時熒光值還是比Fm低,也就是說還存在熒光淬滅,這些剩餘的熒光淬滅即為非光化學淬滅。淬滅係數的計算公式為:qP=(Fm’-Fs)/Fv’=1-(Fs-Fo’)/(Fm’-Fo’);qN=(Fv-Fv’)/Fv=1-(Fm’-Fo’)/(Fm-Fo);NPQ=(Fm-Fm’)/Fm’=Fm/Fm’-1。