令x=atant, 則a^2+x^2=a^2(1+tant^2)=(asect)^2
dx=d(atant)=a(sect)^2dt.
S√(a^2 +x^2)dx= Sasect. a(sect)^2dt =a^2S(sect)^3dt=a^2Ssect d(tant)
=a^2[sect.tant -Stant.(sect)"dt=a^2[sect.tant -Stant.sect.tantdt]
=a^2{.sect.tant -S[(sect)^3-sect]dt}
S√(a^2 +x^2)dx= Sasect. a(sect)^2dt=a^2.sect.tant -a^2S[(sect)^3dt + a^2Ssectdt
左右移項合併,
2S(sect)^3dt=.sect.tant + S1/cost dt
S1/cost dt = S1/sin(π/2+t) dt= ln/sect+tant/+C
即S√(a^2 +x^2)dx=1/2[sect.tant + ln/sect+tant/]+C
tant=x/a, 則sect=√(a^2+x^2)/a
原函式=1/2{x√(a^2+x^2)/a^2 +ln[(√(a^2+x^2)+x] -lna}+C
原函式=1/2{x√(a^2+x^2)/a^2 +ln[(√(a^2+x^2)+x]}+C
令x=atant, 則a^2+x^2=a^2(1+tant^2)=(asect)^2
dx=d(atant)=a(sect)^2dt.
S√(a^2 +x^2)dx= Sasect. a(sect)^2dt =a^2S(sect)^3dt=a^2Ssect d(tant)
=a^2[sect.tant -Stant.(sect)"dt=a^2[sect.tant -Stant.sect.tantdt]
=a^2{.sect.tant -S[(sect)^3-sect]dt}
S√(a^2 +x^2)dx= Sasect. a(sect)^2dt=a^2.sect.tant -a^2S[(sect)^3dt + a^2Ssectdt
左右移項合併,
2S(sect)^3dt=.sect.tant + S1/cost dt
S1/cost dt = S1/sin(π/2+t) dt= ln/sect+tant/+C
即S√(a^2 +x^2)dx=1/2[sect.tant + ln/sect+tant/]+C
tant=x/a, 則sect=√(a^2+x^2)/a
原函式=1/2{x√(a^2+x^2)/a^2 +ln[(√(a^2+x^2)+x] -lna}+C
原函式=1/2{x√(a^2+x^2)/a^2 +ln[(√(a^2+x^2)+x]}+C