電位降法是一種常用的接地電阻測量方法。
其測量手段是在被測地線接地樁一側地上打入兩根輔助測試樁,要求這兩根測試樁位於被測地樁的同一側,三者基本處於同一條直線上,距被測地樁較近的一根輔助測試樁,距離被測地樁20m左右,距被測地樁較遠的一根輔助測試樁距離被測地樁40m左右。
測試時,將擋位打在3P擋位。按下測試鍵,此時在被測地樁和輔助地樁之間可獲得一電壓,儀表透過測量該電流和電壓值,即可計算出被測接地樁的地阻。
此外接地電阻的測量方法還有:電壓電流表法、比率計法和電橋法。按具體測量儀器及布極數可分為:手搖式地阻表法、鉗形地阻表法、電壓電流表法、三極法和四極法。
標準接地電阻規範要求:
1、獨立的防雷保護接地電阻應小於等於10歐;
2、獨立的安全保護接地電阻應小於等於4歐;
3、獨立的交流工作接地電阻應小於等於4歐;
4、獨立的直流工作接地電阻應小於等於4歐;
5、共用接地體(聯合接地)應不大於接地電阻1歐。
影響接地電阻的因素包括接地電極的形狀和尺寸、周圍環境因素以及接地電極周圍的土壤電阻率,其中最重要的是接地電極周圍的土壤電阻率。
土壤中的電阻率與土壤中導電離子的濃度和土壤中的含水量有關。土壤電阻率ρ的大小,主要取決於土壤中導電離子的濃度和土壤中的含水量。土壤中所含導電離子濃度越高,土壤的導電性就越好,ρ就越小;反之就越大。
土壤越溼,含水量越多,導電效能就越好,ρ就越小;反之就越大。土壤中的電阻率與土質有關,不同土質的土壤電阻率不同,甚至相差數千倍。
土壤中的電阻率與土壤的溫度有關,一般是土壤電阻率隨溫度的升高而下降。
土壤中的電阻率與土壤的緻密性有關。土壤的緻密對土壤電阻率也有一定的影響,為了降低接地電極的散流電阻,必須將接地體周圍的回填土夯實,使接地極與土壤緊密接觸,從而達到降低土壤電阻率的效果。
土壤中的電阻率與季節有關。季節不同,土壤的含水量和溫度也就不同,影響土壤電阻率最明顯的因素就是降雨和冰凍。在雨季,由於雨水的滲入,地表層土壤的電阻率降低(低於深層土壤的電阻率);在冬季,由於土壤的冰凍作用,地表層土壤的電阻率升高(高於深層土壤的電阻率)
電位降法是一種常用的接地電阻測量方法。
其測量手段是在被測地線接地樁一側地上打入兩根輔助測試樁,要求這兩根測試樁位於被測地樁的同一側,三者基本處於同一條直線上,距被測地樁較近的一根輔助測試樁,距離被測地樁20m左右,距被測地樁較遠的一根輔助測試樁距離被測地樁40m左右。
測試時,將擋位打在3P擋位。按下測試鍵,此時在被測地樁和輔助地樁之間可獲得一電壓,儀表透過測量該電流和電壓值,即可計算出被測接地樁的地阻。
此外接地電阻的測量方法還有:電壓電流表法、比率計法和電橋法。按具體測量儀器及布極數可分為:手搖式地阻表法、鉗形地阻表法、電壓電流表法、三極法和四極法。
標準接地電阻規範要求:
1、獨立的防雷保護接地電阻應小於等於10歐;
2、獨立的安全保護接地電阻應小於等於4歐;
3、獨立的交流工作接地電阻應小於等於4歐;
4、獨立的直流工作接地電阻應小於等於4歐;
5、共用接地體(聯合接地)應不大於接地電阻1歐。
影響接地電阻的因素包括接地電極的形狀和尺寸、周圍環境因素以及接地電極周圍的土壤電阻率,其中最重要的是接地電極周圍的土壤電阻率。
土壤中的電阻率與土壤中導電離子的濃度和土壤中的含水量有關。土壤電阻率ρ的大小,主要取決於土壤中導電離子的濃度和土壤中的含水量。土壤中所含導電離子濃度越高,土壤的導電性就越好,ρ就越小;反之就越大。
土壤越溼,含水量越多,導電效能就越好,ρ就越小;反之就越大。土壤中的電阻率與土質有關,不同土質的土壤電阻率不同,甚至相差數千倍。
土壤中的電阻率與土壤的溫度有關,一般是土壤電阻率隨溫度的升高而下降。
土壤中的電阻率與土壤的緻密性有關。土壤的緻密對土壤電阻率也有一定的影響,為了降低接地電極的散流電阻,必須將接地體周圍的回填土夯實,使接地極與土壤緊密接觸,從而達到降低土壤電阻率的效果。
土壤中的電阻率與季節有關。季節不同,土壤的含水量和溫度也就不同,影響土壤電阻率最明顯的因素就是降雨和冰凍。在雨季,由於雨水的滲入,地表層土壤的電阻率降低(低於深層土壤的電阻率);在冬季,由於土壤的冰凍作用,地表層土壤的電阻率升高(高於深層土壤的電阻率)