一)相遇問題
兩個運動物體作相向運動或在環形跑道上作背向運動,隨著時間的發展,必然面對面地相遇,這類問題叫做相遇問題。它的特點是兩個運動物體共同走完整個路程。
小學數學教材中的行程問題,一般是指相遇問題。
相遇問題根據數量關係可分成三種類型:求路程,求相遇時間,求速度。
它們的基本關係式如下:
總路程=(甲速+乙速)×相遇時間
相遇時間=總路程÷(甲速+乙速)
另一個速度=甲乙速度和-已知的一個速度
(二)追及問題
追及問題的地點可以相同(如環形跑道上的追及問題),也可以不同,但方向一般是相同的。由於速度不同,就發生快的追及慢的問題。
根據速度差、距離差和追及時間三者之間的關係,常用下面的公式:
距離差=速度差×追及時間
追及時間=距離差÷速度差
速度差=距離差÷追及時間
速度差=快速-慢速
解題的關鍵是在互相關聯、互相對應的距離差、速度差、追及時間三者之中,找出兩者,然後運用公式求出第三者來達到解題目的。
(三)二、相離問題
兩個運動物體由於背向運動而相離,就是相離問題。解答相離問題的關鍵是求出兩個運動物體共同趨勢的距離(速度和)。
基本公式有:
兩地距離=速度和×相離時間
相離時間=兩地距離÷速度和
速度和=兩地距離÷相離時間
流水問題
順流而下與逆流而上問題通常稱為流水問題,流水問題屬於行程問題,仍然利用速度、時間、路程三者之間的關係進行解答。解答時要注意各種速度的涵義及它們之間的關係。
船在靜水中行駛,單位時間內所走的距離叫做划行速度或叫做劃力;順水行船的速度叫順流速度;逆水行船的速度叫做逆流速度;船放中流,不靠動力順水而行,單位時間內走的距離叫做水流速度。各種速度的關係如下:
(1)划行速度+水流速度=順流速度
(2)划行速度-水流速度=逆流速度
(3)(順流速度+
逆流速度)÷2=划行速度
(4)(順流速度-逆流速度)÷2=水流速度
流水問題的數量關係仍然是速度、時間與距離之間的關係。即:速度×時間=距離;距離÷速度=時間;距離÷時間=速度。但是,河水是流動的,這就有順流、逆流的區別。在計算時,要把各種速度之間的關係弄清楚是非常必要的。
一)相遇問題
兩個運動物體作相向運動或在環形跑道上作背向運動,隨著時間的發展,必然面對面地相遇,這類問題叫做相遇問題。它的特點是兩個運動物體共同走完整個路程。
小學數學教材中的行程問題,一般是指相遇問題。
相遇問題根據數量關係可分成三種類型:求路程,求相遇時間,求速度。
它們的基本關係式如下:
總路程=(甲速+乙速)×相遇時間
相遇時間=總路程÷(甲速+乙速)
另一個速度=甲乙速度和-已知的一個速度
(二)追及問題
追及問題的地點可以相同(如環形跑道上的追及問題),也可以不同,但方向一般是相同的。由於速度不同,就發生快的追及慢的問題。
根據速度差、距離差和追及時間三者之間的關係,常用下面的公式:
距離差=速度差×追及時間
追及時間=距離差÷速度差
速度差=距離差÷追及時間
速度差=快速-慢速
解題的關鍵是在互相關聯、互相對應的距離差、速度差、追及時間三者之中,找出兩者,然後運用公式求出第三者來達到解題目的。
(三)二、相離問題
兩個運動物體由於背向運動而相離,就是相離問題。解答相離問題的關鍵是求出兩個運動物體共同趨勢的距離(速度和)。
基本公式有:
兩地距離=速度和×相離時間
相離時間=兩地距離÷速度和
速度和=兩地距離÷相離時間
流水問題
順流而下與逆流而上問題通常稱為流水問題,流水問題屬於行程問題,仍然利用速度、時間、路程三者之間的關係進行解答。解答時要注意各種速度的涵義及它們之間的關係。
船在靜水中行駛,單位時間內所走的距離叫做划行速度或叫做劃力;順水行船的速度叫順流速度;逆水行船的速度叫做逆流速度;船放中流,不靠動力順水而行,單位時間內走的距離叫做水流速度。各種速度的關係如下:
(1)划行速度+水流速度=順流速度
(2)划行速度-水流速度=逆流速度
(3)(順流速度+
逆流速度)÷2=划行速度
(4)(順流速度-逆流速度)÷2=水流速度
流水問題的數量關係仍然是速度、時間與距離之間的關係。即:速度×時間=距離;距離÷速度=時間;距離÷時間=速度。但是,河水是流動的,這就有順流、逆流的區別。在計算時,要把各種速度之間的關係弄清楚是非常必要的。