根據誘導公式:sin(x+2kπ)=sinx所以原式可化成sin(x+π)再由誘導公式sin(x+π)=-sinx所以原式=sinx^2誘導公式:公式一:設α為任意角,終邊相同的角的同一三角函式的值相等 k是整數 sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα 公式二:設α為任意角,π+α的三角函式值與α的三角函式值之間的關係 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 公式三:任意角α與 -α的三角函式值之間的關係 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四:利用公式二和公式三可以得到π-α與α的三角函式值之間的關係 sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 公式五:利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 公式六:π/2±α及3π/2±α與α的三角函式值之間的關係 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα
根據誘導公式:sin(x+2kπ)=sinx所以原式可化成sin(x+π)再由誘導公式sin(x+π)=-sinx所以原式=sinx^2誘導公式:公式一:設α為任意角,終邊相同的角的同一三角函式的值相等 k是整數 sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα 公式二:設α為任意角,π+α的三角函式值與α的三角函式值之間的關係 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 公式三:任意角α與 -α的三角函式值之間的關係 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四:利用公式二和公式三可以得到π-α與α的三角函式值之間的關係 sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 公式五:利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 公式六:π/2±α及3π/2±α與α的三角函式值之間的關係 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα