回覆列表
  • 1 # 大寶8211

    cos^x^6

    = (cosx²)³

    = [(1+cos2x)/2]³ = (1/8)(1+cos2x)³

    = (1/8)(1+3cos2x+3cos²2x+cos³2x)

    = (1/8)+(3/8)cos2x+(3/8)(1/2)(1+cos4x)+(1/8)(1/2)(1+cos4x)(cos2x)

    = (1/8)+(3/8)cos2x+(3/16)+(3/16)cos4x+(1/16)(cos2x+cos4xcos2x)

    = (5/16)+(3/8)cos2x+(3/16)cos4x+(1/16)cos2x+(1/32)cos6x+(1/32)cos2x

    = (5/16)+(15/32)cos2x+(3/16)cos4x+(1/32)cos6x

    ∫cos^6x dx = ∫[(5/16)+(15/32)cos2x+(3/16)cos4x+(1/32)cos6x] dx

    = (5/16)∫ dx + (15/32)∫cos2x dx + (3/16)∫cos4x dx + (1/32)∫cos6x dx

    = (5/16)∫ dx + (15/32)(1/2)∫cos2x d(2x) + (3/16)(1/4)∫cos4x d(4x) + (1/32)(1/6)∫cos6x d(6x)

    = (5/16)x + (15/64)sin2x + (3/64)sin4x + (1/192)sin6x + C

  • 中秋節和大豐收的關聯?
  • 如何啟用尼康D810相機上的“多重爆光”功能,注意什麼?