回覆列表
  • 1 # 大寶8211

    求不定積分∫(e^x)sin²xdx

    解:原式=(1/2)∫(e^x)(1-cos2x)dx

    =(1/2)[(e^x)-∫(e^x)cos2xdx]

    =(1/2)[e^x-∫cos2xd(e^x)]

    =(1/2)e^x-(1/2)

    [(e^x)cos2x+2∫(e^x)sin2xdx]

    =(1/2)(1-cos2x)(e^x)-∫(e^x)sin2xdx

    =(1/2)(1-cos2x)(e^x)-∫sin2xd(e^x)

    =(1/2)(1-cos2x)(e^x)-[(sin2x)(e^x)-2∫(e^x)cos2xdx]

    =(1/2)(1-cos2x)(e^x)-(sin2x)(e^x)+2∫(e^x)cos2xdx

    移項得

    (5/2)∫(e^x)cos2xdx

    =(1/2)e^x-(1/2)(1-cos2x)(e^x)+(sin2x)(e^x)

    =(1/2)(cos2x+2sin2x)(e^x)

    故∫(e^x)cos2xdx

    =(1/5)(cos2x+2sin2x)(e^x)

    故原式

    =(1/2)e^x-(1/5)(cos2x+2sin2x)(e^x)+C

    =[(1/2)-(1/5)(cos2x+2sin2x)]e^x+C.

  • 中秋節和大豐收的關聯?
  • 談談發生在自己身邊的靈異事件?